[CES] CES 2026 ์  ์Šจ ํ™ฉ ๊ธฐ์กฐ์—ฐ์„ค ์ •๋ฆฌ

Posted by Euisuk's Dev Log on January 8, 2026

[CES] CES 2026 ์  ์Šจ ํ™ฉ ๊ธฐ์กฐ์—ฐ์„ค ์ •๋ฆฌ

https://youtu.be/0NBILspM4c4

TL;DR

NVIDIA๋Š” AI ์—ฐ์‚ฐ ์ˆ˜์š” ํญ์ฆ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด Vera Rubin GPU๋ฅผ ์–‘์‚ฐํ•˜๊ณ , Cosmos/Alpamayo๋กœ Physical AI ์‹œ๋Œ€๋ฅผ ์—ด๋ฉฐ, ๋ฐ˜๋„์ฒด๋ถ€ํ„ฐ ์ œ์กฐ๊นŒ์ง€ ์ „ ์‚ฐ์—…์— AI๋ฅผ ํ†ตํ•ฉํ•˜๋Š” Full Stack ์ „๋žต์„ ์ถ”์ง„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

1๏ธโƒฃ AI ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ์ง„ํ™”

  • Test-Time Scaling: AI๊ฐ€ ๋‹ต๋ณ€ ์ „์— โ€œ์ƒ๊ฐโ€ํ•˜๋Š” ์‹œ๊ฐ„์ด ์„ฑ๋Šฅ ํ–ฅ์ƒ์˜ ์ƒˆ๋กœ์šด ์ถ•์ด ๋จ (GPT-01 ์ดํ›„)
  • Agentic AI: ๋„๊ตฌ ์‚ฌ์šฉ, ๊ณ„ํš ์ˆ˜๋ฆฝ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๊ฐ€๋Šฅํ•œ ์ž์œจ์  AI ์‹œ์Šคํ…œ ๋ถ€์ƒ
  • Open Model: DeepSeek R1์ด ์˜คํ”ˆ์†Œ์Šค๋„ Frontier์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…, NVIDIA๋„ ์ž์ฒด ์˜คํ”ˆ ๋ชจ๋ธ ์ƒํƒœ๊ณ„ ๊ตฌ์ถ•

2๏ธโƒฃ Physical AI: AI๊ฐ€ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์™€ ๋งŒ๋‚˜๋‹ค

  • AI๊ฐ€ ํ™”๋ฉด์„ ๋„˜์–ด ๋ฌผ๋ฆฌ ์„ธ๊ณ„์™€ ์ง์ ‘ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ ค๋ฉด ์ค‘๋ ฅ, ๊ด€์„ฑ, ์ธ๊ณผ๊ด€๊ณ„ ๊ฐ™์€ โ€œ์ƒ์‹โ€์„ ํ•™์Šตํ•ด์•ผ ํ•จ
  • ์ด๋ฅผ ์œ„ํ•ด 3์ข…๋ฅ˜์˜ ์ปดํ“จํ„ฐ ํ•„์š”: Training(ํ•™์Šต), Inference(์‹คํ–‰), Simulation(์‹œ๋ฎฌ๋ ˆ์ด์…˜)
  • Cosmos(World Foundation Model)๊ฐ€ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์‹ค์ œ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ ํ•ด๊ฒฐ
  • Alpamayo: ์„ธ๊ณ„ ์ตœ์ดˆ์˜ โ€œ์‚ฌ๊ณ ํ•˜๋Š”โ€ ์ž์œจ์ฃผํ–‰ AI, Mercedes-Benz CLA์— ํƒ‘์žฌ๋˜์–ด 2026๋…„ ์ถœ์‹œ

3๏ธโƒฃ Vera Rubin: ์ฐจ์„ธ๋Œ€ AI ์Šˆํผ์ปดํ“จํ„ฐ

  • Mooreโ€™s Law ๋‘”ํ™”๋กœ ๋‹จ์ผ ์นฉ ์„ฑ๋Šฅ ํ–ฅ์ƒ๋งŒ์œผ๋กœ๋Š” AI ์ˆ˜์š”(๋ชจ๋ธ 10๋ฐฐ/๋…„, ํ† ํฐ 5๋ฐฐ/๋…„ ์ฆ๊ฐ€)๋ฅผ ๋”ฐ๋ผ๊ฐˆ ์ˆ˜ ์—†์Œ
  • 6๊ฐœ ์นฉ ์ „๋ฉด ์žฌ์„ค๊ณ„(Extreme Co-Design): Vera CPU, Rubin GPU, NVLink 6, ConnectX-9, Bluefield-4, Spectrum-X
  • ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” 1.6๋ฐฐ ์ฆ๊ฐ€์— ๋ถˆ๊ณผํ•˜์ง€๋งŒ, ์„ฑ๋Šฅ์€ Inference 5๋ฐฐ, Training 3.5๋ฐฐ ํ–ฅ์ƒ
  • 45ยฐC ์˜จ์ˆ˜ ๋ƒ‰๊ฐ์œผ๋กœ ๋ฐ์ดํ„ฐ์„ผํ„ฐ ์ „๋ ฅ 6% ์ ˆ๊ฐ, ์ „์ฒด ์‹œ์Šคํ…œ ์•”ํ˜ธํ™”(Confidential Computing) ์ง€์›
  • ์–‘์‚ฐ ๋Œ์ž… ๋ฐœํ‘œ

4๏ธโƒฃ ์‚ฐ์—… ์ƒํƒœ๊ณ„ ํ™•์žฅ

  • ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ: Palantir, ServiceNow, Snowflake ๋“ฑ๊ณผ Agentic AI ํ”„๋ ˆ์ž„์›Œํฌ ํ†ตํ•ฉ
  • ๋ฐ˜๋„์ฒด/์ œ์กฐ: Cadence, Synopsys, Siemens์™€ ํŒŒํŠธ๋„ˆ์‹ญ์œผ๋กœ ์นฉ ์„ค๊ณ„๋ถ€ํ„ฐ ์ œ์กฐ ๋ผ์ธ๊นŒ์ง€ AI ์ ์šฉ
  • ์  ์Šจ ํ™ฉ์˜ ๋น„์ „: โ€œ์นฉ์ด ์ปดํ“จํ„ฐ ์•ˆ์—์„œ ์„ค๊ณ„๋˜๊ณ , ๋งŒ๋“ค์–ด์ง€๊ณ , ํ…Œ์ŠคํŠธ๋œ ํ›„์—์•ผ ์ค‘๋ ฅ์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ๋  ๊ฒƒโ€

๋‘๋‘ฅ๋‘ฅ์žฅ

  1. ์˜คํ”„๋‹: ํ”Œ๋žซํผ ์ „ํ™˜์˜ ์‹œ๋Œ€

์  ์Šจ ํ™ฉ์€ ์ปดํ“จํ„ฐ ์‚ฐ์—…์ด 10~15๋…„ ์ฃผ๊ธฐ๋กœ Platform Shift๋ฅผ ๊ฒฝํ—˜ํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค.

์‹œ๋Œ€ ํ”Œ๋žซํผ
1์„ธ๋Œ€ Mainframe
2์„ธ๋Œ€ PC
3์„ธ๋Œ€ Internet
4์„ธ๋Œ€ Cloud
5์„ธ๋Œ€ Mobile
ํ˜„์žฌ ?

๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ๋Š” ๋‘ ๊ฐ€์ง€ ํ”Œ๋žซํผ ์ „ํ™˜์ด ๋™์‹œ์— ์ผ์–ด๋‚˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค:

  1. AI๋กœ์˜ ์ „ํ™˜: ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด AI ์œ„์— ๊ตฌ์ถ•๋จ
  2. ์ปดํ“จํŒ… ์Šคํƒ ์ „์ฒด์˜ ์žฌ๋ฐœ๋ช…: ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ/์‹คํ–‰ ๋ฐฉ์‹์˜ ๊ทผ๋ณธ์  ๋ณ€ํ™”

์ปดํ“จํŒ… ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ๋ณ€ํ™”

๊ธฐ์กด ํ˜„์žฌ
์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ํ•™์Šต(Train)
CPU์—์„œ ์‹คํ–‰ GPU์—์„œ ์‹คํ–‰
์‚ฌ์ „ ์ปดํŒŒ์ผ๋œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋งค๋ฒˆ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ƒ์„ฑ (ํ† ํฐ, ํ”ฝ์…€)

์ด๋กœ ์ธํ•ด ์ง€๋‚œ 10๋…„๊ฐ„ ๊ตฌ์ถ•๋œ ์•ฝ 10์กฐ ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ์˜ ์ปดํ“จํŒ… ์ธํ”„๋ผ๊ฐ€ ํ˜„๋Œ€ํ™”๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋งค๋…„ ์ˆ˜์ฒœ์–ต ๋‹ฌ๋Ÿฌ์˜ VC ํˆฌ์ž์™€ 100์กฐ ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ ์‚ฐ์—…์˜ R&D ์˜ˆ์‚ฐ์ด AI๋กœ ์ „ํ™˜๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.


  1. 2025๋…„ AI ๋ฐœ์ „ ํšŒ๊ณ 

2.1 Scaling Laws์˜ ์ง„ํ™”

์—ฐ๋„ ์ด์ •ํ‘œ ์˜์˜
2015 BERT ์‹ค์งˆ์  ์˜ํ–ฅ๋ ฅ์„ ๊ฐ€์ง„ ์ตœ์ดˆ์˜ Language Model
2017 Transformer ํ˜์‹ ์  ์•„ํ‚คํ…์ฒ˜ ๋“ฑ์žฅ
2022 ChatGPT Moment AI ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๋Œ€์ค‘์  ๊ฐ์„ฑ
2023 ChatGPT-o1 Reasoning + Test-Time Scaling ๊ฐœ๋… ๋„์ž…

Test-Time Scaling์ด๋ž€?

  • Pre-training: ๋ชจ๋ธ์ด ํ•™์Šตํ•˜๋Š” ๋‹จ๊ณ„
  • Post-training: Reinforcement Learning์œผ๋กœ ์Šคํ‚ฌ ์Šต๋“
  • Test-Time Scaling: ์ถ”๋ก  ์‹œ์ ์— โ€œ์ƒ๊ฐ(Thinking)โ€ํ•˜๋Š” ๋‹จ๊ณ„

โ€œYou think in real time. Each one of these phases of artificial intelligence requires enormous amount of compute.โ€

2.2 Agentic System์˜ ๋ถ€์ƒ (2024-2025)

2024๋…„๋ถ€ํ„ฐ Agentic Model์ด ๋“ฑ์žฅํ•˜์—ฌ 2025๋…„์— ํญ๋ฐœ์ ์œผ๋กœ ํ™•์‚ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Agentic AI์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ:

  • Reasoning (์ถ”๋ก )
  • Research (์ •๋ณด ๊ฒ€์ƒ‰)
  • Tool Use (๋„๊ตฌ ์‚ฌ์šฉ)
  • Planning (๊ณ„ํš ์ˆ˜๋ฆฝ)
  • Simulation (๊ฒฐ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜)

์  ์Šจ ํ™ฉ์€ Cursor๋ฅผ ์–ธ๊ธ‰ํ•˜๋ฉฐ โ€œNVIDIA ๋‚ด๋ถ€์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ฐฉ์‹์„ ํ˜์‹ ํ–ˆ๋‹คโ€๊ณ  ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค.

2.3 Physical AI์˜ ๋“ฑ์žฅ

AI์˜ ์ข…๋ฅ˜๊ฐ€ ๋‹ค์–‘ํ™”๋˜์—ˆ์Šต๋‹ˆ๋‹ค:

AI ์œ ํ˜• ์„ค๋ช…
Large Language Model ์–ธ์–ด ์ดํ•ด ๋ฐ ์ƒ์„ฑ
Physical AI ์ž์—ฐ ๋ฒ•์น™์„ ์ดํ•ดํ•˜๊ณ  ๋ฌผ๋ฆฌ ์„ธ๊ณ„์™€ ์ƒํ˜ธ์ž‘์šฉ
AI Physics ๋ฌผ๋ฆฌ ๋ฒ•์น™ ์ž์ฒด๋ฅผ ์ดํ•ดํ•˜๋Š” AI

2.4 Open Model์˜ ์•ฝ์ง„

DeepSeek R1์˜ ๋“ฑ์žฅ:

  • ์ตœ์ดˆ์˜ ์˜คํ”ˆ์†Œ์Šค Reasoning ์‹œ์Šคํ…œ
  • ์ „ ์„ธ๊ณ„๋ฅผ ๋†€๋ผ๊ฒŒ ํ•จ
  • ์˜คํ”ˆ ๋ชจ๋ธ๋„ Frontier์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…

โ€œOpen models have also reached the frontierโ€ฆ still solidly 6 months behind the frontier models, but every single 6 months a new model is emerging.โ€

์˜คํ”ˆ ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ ์ˆ˜๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•œ ์ด์œ :

  • ์Šคํƒ€ํŠธ์—…์˜ AI ํ˜๋ช… ์ฐธ์—ฌ
  • ๋Œ€๊ธฐ์—…์˜ ํ™œ์šฉ
  • ์—ฐ๊ตฌ์ž/ํ•™์ƒ์˜ ์ ‘๊ทผ
  • ๋ชจ๋“  ๊ตญ๊ฐ€๊ฐ€ AI์— ์ฐธ์—ฌํ•˜๊ณ ์ž ํ•จ

  1. NVIDIA์˜ ์˜คํ”ˆ ๋ชจ๋ธ ์ƒํƒœ๊ณ„

NVIDIA๋Š” ์ˆ˜์‹ญ์–ต ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ์˜ DGX Cloud๋ฅผ ์ž์ฒด ์šด์˜ํ•˜๋ฉฐ Frontier AI ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

3.1 NVIDIA์˜ ์ฃผ์š” ์˜คํ”ˆ ๋ชจ๋ธ

Agentic AI

  • Nemotron โ€” Hybrid Transformer-SSM ๊ธฐ๋ฐ˜ Language Model, ๋น ๋ฅธ ์ถ”๋ก  ์†๋„์™€ ๊ธด ์‚ฌ๊ณ  ์‹œ๊ฐ„ ์ง€์›

Physical AI / World Foundation

  • Cosmos โ€” ๋ฌผ๋ฆฌ ์„ธ๊ณ„์˜ ์ž‘๋™ ๋ฐฉ์‹์„ ์ดํ•ดํ•˜๋Š” World Foundation Model (Cosmos Reason, Cosmos Predict, Cosmos Transfer ํฌํ•จ)

Robotics

  • Isaac GR00T โ€” ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์šฉ Vision-Language-Action (VLA) ๋ชจ๋ธ, ์ „์‹  ์ œ์–ด ๋ฐ ์ถ”๋ก  ์ง€์›

Autonomous Vehicles

  • Alpamayo โ€” ์„ธ๊ณ„ ์ตœ์ดˆ Reasoning ๊ธฐ๋ฐ˜ ์ž์œจ์ฃผํ–‰ VLA ๋ชจ๋ธ, End-to-End ํ•™์Šต

Healthcare / Biomedical

  • Clara โ€” ์˜๋ฃŒ ์˜์ƒ ๋ถ„์„, ์‹ ์•ฝ ๊ฐœ๋ฐœ ๊ฐ€์†ํ™” ํ”Œ๋žซํผ
  • Clara La-Proteina โ€” 3D ๋‹จ๋ฐฑ์งˆ ๊ตฌ์กฐ๋ฅผ ์›์ž ๋‹จ์œ„๋กœ ์ƒ์„ฑ
  • Clara CodonFM โ€” RNA ๊ทœ์น™ ํ•™์Šต, ์น˜๋ฃŒ์ œ ์„ค๊ณ„ ๊ฐœ์„ 

Structural Biology

  • OpenFold โ€” ๋‹จ๋ฐฑ์งˆ ๊ตฌ์กฐ ์˜ˆ์ธก

Cellular Biology

  • EVO 2 โ€” ๋‹ค์ค‘ ๋‹จ๋ฐฑ์งˆ ์ดํ•ด, ์„ธํฌ ํ‘œํ˜„์˜ ์‹œ์ž‘

Climate / Weather

  • Earth-2 โ€” AI ๊ธฐ๋ฐ˜ ๊ธฐํ›„ ๋””์ง€ํ„ธ ํŠธ์œˆ ํ”Œ๋žซํผ
  • FourCastNet โ€” ๊ธ€๋กœ๋ฒŒ ๋Œ€๊ธฐ ์—ญํ•™ ์˜ˆ์ธก AI ๋ชจ๋ธ
  • CorrDiff โ€” ์ƒ์„ฑํ˜• AI ๊ธฐ๋ฐ˜ ๊ณ ํ•ด์ƒ๋„ ๋‹ค์šด์Šค์ผ€์ผ๋ง ๋ชจ๋ธ (12.5๋ฐฐ ํ•ด์ƒ๋„, 1000๋ฐฐ ๋น ๋ฆ„)

3.2 ์˜คํ”ˆ์†Œ์Šค ์ฒ ํ•™

NVIDIA์˜ ์ ‘๊ทผ๋ฒ•:

  1. ๋ชจ๋ธ ์˜คํ”ˆ์†Œ์Šค
  2. ํ•™์Šต์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ ์˜คํ”ˆ์†Œ์Šค
  3. ํŒŒ์ƒ ๋ชจ๋ธ ์ƒ์„ฑ ์ง€์›
  4. Nemo Libraries ์ œ๊ณต
    (๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ โ†’ ํ•™์Šต โ†’ ํ‰๊ฐ€ โ†’ Guardrail โ†’ ๋ฐฐํฌ)

3.3 ๋ฆฌ๋”๋ณด๋“œ ์„ฑ๊ณผ

NVIDIA ๋ชจ๋ธ๋“ค์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๋ฆฌ๋”๋ณด๋“œ 1์œ„๋ฅผ ๊ธฐ๋ก:

  • Intelligence (์ง€๋Šฅ)
  • PDF Retriever/Parser (๋ฌธ์„œ ์ดํ•ด)
  • Speech Recognition (์Œ์„ฑ ์ธ์‹)
  • Semantic Search (์˜๋ฏธ ๊ฒ€์ƒ‰)

์ถ”๊ฐ€ ์กฐ์‚ฌ (๋ถ„์•ผ - ๋ชจ๋ธ)

๋ถ„์•ผ ๋ชจ๋ธ๋ช… ๋ฒค์น˜๋งˆํฌ/๋ฆฌ๋”๋ณด๋“œ
Intelligence/Reasoning Nemotron 3 ์ฝ”๋”ฉ, ์ถ”๋ก , ์ˆ˜ํ•™, ์žฅ๋ฌธ๋งฅ
PDF/Document Parser Nemotron Parse ViDoRe V1, ViDoRe V2
OCR/Document Intelligence Llama Nemotron Nano VL OCRBench V2 1์œ„
Speech Recognition Nemotron Speech (ASR) ASR ๋ฒค์น˜๋งˆํฌ 1์œ„, 10x ์†๋„
Semantic Search/Embedding NV-Embed-v2 MTEB 1์œ„ (72.31์ )
Retrieval NV-Retriever MTEB Retrieval/BEIR 1์œ„

  1. Agentic AI์˜ ์•„ํ‚คํ…์ฒ˜

4.1 Reasoning์˜ ์ค‘์š”์„ฑ

ChatGPT ์ดˆ๊ธฐ์˜ ๋ฌธ์ œ์ : Hallucination

  • ์›์ธ: ๊ณผ๊ฑฐ๋Š” ๊ธฐ์–ตํ•˜์ง€๋งŒ ํ˜„์žฌ/๋ฏธ๋ž˜๋Š” ๋ชจ๋ฆ„
  • ํ•ด๊ฒฐ์ฑ…: Research ๊ธฐ๋ฐ˜ Grounding

Reasoning ๋Šฅ๋ ฅ:

  • ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ์ง€ ํŒ๋‹จ
  • ๋„๊ตฌ ์‚ฌ์šฉ ์—ฌ๋ถ€ ๊ฒฐ์ •
  • ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„ํ•ด
  • ๊ฐ ๋‹จ๊ณ„๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฌธ์ œ ํ•ด๊ฒฐ

โ€œWe can encounter a circumstance weโ€™ve never seen before and break it down into circumstances and knowledge or rules that we know how to do.โ€

4.2 Multi-Model ์•„ํ‚คํ…์ฒ˜

์  ์Šจ ํ™ฉ์€ Perplexity๋ฅผ ์–ธ๊ธ‰ํ•˜๋ฉฐ Multi-Model ์ ‘๊ทผ์˜ ํ˜์‹ ์„ฑ์„ ๊ฐ•์กฐํ–ˆ์Šต๋‹ˆ๋‹ค.

ํ˜„๋Œ€ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ํŠน์„ฑ:

  • Multi-modal: ์Œ์„ฑ, ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ, ๋น„๋””์˜ค, 3D, ๋‹จ๋ฐฑ์งˆ ๋“ฑ
  • Multi-model: ๊ฐ ์ž‘์—…์— ์ตœ์ ์˜ ๋ชจ๋ธ ์‚ฌ์šฉ
  • Multi-cloud: ๋‹ค์–‘ํ•œ ํด๋ผ์šฐ๋“œ์— ๋ถ„์‚ฐ
  • Hybrid-cloud: Edge + Cloud ์กฐํ•ฉ

4.3 Agentic AI Framework

๊ธฐ๋ณธ ๊ตฌ์กฐ:

1
2
3
4
5
[Frontier Model API] + [Custom Local Model]
            โ†“
    [Intent-based Router]
            โ†“
    [Tool/File/Agent ์ ‘๊ทผ]

ํ•ต์‹ฌ ์žฅ์ :

  1. Frontier ์œ ์ง€: ํ•ญ์ƒ ์ตœ์‹  ๋ชจ๋ธ ํ™œ์šฉ
  2. Customization: ์ž์‚ฌ ๋„๋ฉ”์ธ ์ „๋ฌธ์„ฑ ๋ฐ˜์˜
  3. Privacy: ๋ฏผ๊ฐ ๋ฐ์ดํ„ฐ๋Š” ๋กœ์ปฌ ์ฒ˜๋ฆฌ

4.4 ๋ฐ๋ชจ: ๊ฐœ์ธ AI ๋น„์„œ

์  ์Šจ ํ™ฉ์€ DGX Spark๋ฅผ ํ™œ์šฉํ•œ ๊ฐœ์ธ ๋น„์„œ ๋ฐ๋ชจ๋ฅผ ์‹œ์—ฐํ–ˆ์Šต๋‹ˆ๋‹ค (์˜์ƒ):

  • Brev๋กœ DGX Spark๋ฅผ ๊ฐœ์ธ ํด๋ผ์šฐ๋“œ๋กœ ์ „ํ™˜
  • Frontier Model API๋กœ ์™ธ๋ถ€ Frontier Model ์„ ์–ธ
  • Customized Open Models๋กœ ๋กœ์ปฌ ๋ชจ๋ธ ์„ ์–ธ

  • Intent-based Router๋กœ ์ž‘์—… ๋ถ„๋ฐฐ
    • ๋ฏผ๊ฐํ•œ ์ž‘์—… (์ด๋ฉ”์ผ ๋“ฑ) โ†’ ๋กœ์ปฌ ์˜คํ”ˆ ๋ชจ๋ธ (DGX Spark์—์„œ ์‹คํ–‰, ๋ฐ์ดํ„ฐ ์™ธ๋ถ€ ์œ ์ถœ ์—†์Œ)
    • ๋ณต์žกํ•œ ์ถ”๋ก  ์ž‘์—… โ†’ Frontier Model API (Google, OpenAI, Anthropic, xAI)

  • Reachi Mini Robot ์ œ์–ด/์—ฐ๋™
  • ElevenLabs ์Œ์„ฑ API ์—ฐ๋™
  • ์ด๋ฏธ์ง€ ์ƒ์„ฑ (์Šค์ผ€์น˜ โ†’ ๊ฑด์ถ• ๋ Œ๋”๋ง)

  1. ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ AI ํ†ตํ•ฉ

์ฃผ์š” ํŒŒํŠธ๋„ˆ์‹ญ

NVIDIA AI๊ฐ€ ํ†ตํ•ฉ๋œ ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ํ”Œ๋žซํผ:

ํŒŒํŠธ๋„ˆ ๋ถ„์•ผ ํ†ตํ•ฉ ๋‚ด์šฉ
Palantir AI/Data Platform ์ „์ฒด ํ”Œ๋žซํผ ๊ฐ€์†ํ™”
ServiceNow Enterprise Service ๊ณ ๊ฐ/์ง์› ์„œ๋น„์Šค
Snowflake Cloud Data ๋ฐ์ดํ„ฐ ํ”Œ๋žซํผ
Code Rabbit Developer Tools AI ์ฝ”๋“œ ๋ฆฌ๋ทฐ (NVIDIA ๋‚ด๋ถ€ ์‚ฌ์šฉ)
CrowdStrike Security AI ์œ„ํ˜‘ ํƒ์ง€
NetApp Data Platform Semantic AI + Agentic ์‹œ์Šคํ…œ

์  ์Šจ ํ™ฉ์€ ์ด๋Ÿฌํ•œ ํŒŒํŠธ๋„ˆ์‹ญ์˜ ๊ณตํ†ต์ ์„ ๊ฐ•์กฐํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ AI ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, Agentic AI๊ฐ€ ํ”Œ๋žซํผ์˜ ์ƒˆ๋กœ์šด ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ๋œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.

๊ธฐ์กด์—๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ๋ณต์žกํ•œ ๋Œ€์‹œ๋ณด๋“œ์™€ ์Šคํ”„๋ ˆ๋“œ์‹œํŠธ๋ฅผ ์ง์ ‘ ์กฐ์ž‘ํ•ด์•ผ ํ–ˆ์ง€๋งŒ, ์ด์ œ๋Š” AI Agent์™€ ์ž์—ฐ์–ด๋กœ ๋Œ€ํ™”ํ•˜๋ฉฐ ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์  ์Šจ ํ™ฉ์€ ์ด๋ฅผ โ€œ์—‘์…€ ์นธ ์ฑ„์šฐ๊ธฐ์—์„œ ์‚ฌ๋žŒ๊ณผ ๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœโ€ ๋ฐ”๋€Œ๋Š” ๊ฒƒ์ด๋ผ๊ณ  ํ‘œํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค.


  1. Physical AI: ๋ฌผ๋ฆฌ ์„ธ๊ณ„์™€ ๋งŒ๋‚˜๋Š” AI

์  ์Šจ ํ™ฉ์€ 8๋…„๊ฐ„ Physical AI๋ฅผ ์—ฐ๊ตฌํ•ด์™”๋‹ค๊ณ  ๋ฐํ˜”์Šต๋‹ˆ๋‹ค. Physical AI๋ž€ ํ™”๋ฉด ์† ๋””์ง€ํ„ธ ์„ธ๊ณ„๋ฅผ ๋„˜์–ด, ๋กœ๋ด‡์ด๋‚˜ ์ž์œจ์ฃผํ–‰์ฐจ์ฒ˜๋Ÿผ ์‹ค์ œ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์—์„œ ๋™์ž‘ํ•˜๋Š” AI๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

6.1 Physical AI๊ฐ€ ์ดํ•ดํ•ด์•ผ ํ•  ๊ฒƒ๋“ค

ChatGPT ๊ฐ™์€ ์–ธ์–ด ๋ชจ๋ธ์€ ํ…์ŠคํŠธ๋ฅผ ์ž˜ ์ดํ•ดํ•˜์ง€๋งŒ, ๋ฌผ๋ฆฌ ์„ธ๊ณ„์— ๋Œ€ํ•ด์„œ๋Š” ์•„๋ฌด๊ฒƒ๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค. ์  ์Šจ ํ™ฉ์€ AI๊ฐ€ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์—์„œ ๋™์ž‘ํ•˜๋ ค๋ฉด ์ธ๊ฐ„์—๊ฒŒ๋Š” ๋„ˆ๋ฌด๋‚˜ ๋‹น์—ฐํ•œ โ€œ์ƒ์‹โ€์„ ํ•™์Šตํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ์Šต๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด:

  • Object Permanence (๊ฐ์ฒด ์˜์†์„ฑ): ๋ฌผ์ฒด๊ฐ€ ์‹œ์•ผ์—์„œ ์‚ฌ๋ผ์ ธ๋„ ์—ฌ์ „ํžˆ ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ
  • Causality (์ธ๊ณผ๊ด€๊ณ„): ๋ฌผ์ฒด๋ฅผ ๋ฐ€๋ฉด ๋„˜์–ด์ง„๋‹ค๋Š” ๊ฒƒ
  • Friction & Gravity (๋งˆ์ฐฐ๊ณผ ์ค‘๋ ฅ): ๋ฌผ์ฒด๊ฐ€ ๋ฐ”๋‹ฅ์— ๋ถ™์–ด์žˆ๊ณ , ๋–จ์–ด์ง€๋ฉด ์•„๋ž˜๋กœ ๊ฐ„๋‹ค๋Š” ๊ฒƒ
  • Inertia (๊ด€์„ฑ): ๋ฌด๊ฑฐ์šด ํŠธ๋Ÿญ์€ ๊ธ‰์ •๊ฑฐ๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ

โ€œThese ideas are common sense to even a little child. But for AI, itโ€™s completely unknown.โ€

์–ด๋ฆฐ์•„์ด๋„ ๋ณธ๋Šฅ์ ์œผ๋กœ ์•„๋Š” ์ด๋Ÿฐ ๊ฐœ๋…๋“ค์„ AI๋Š” ์ „ํ˜€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด Physical AI ๊ฐœ๋ฐœ์ด ์–ด๋ ค์šด ์ด์œ ์ž…๋‹ˆ๋‹ค.

6.2 3-Computer ์•„ํ‚คํ…์ฒ˜

๊ทธ๋ ‡๋‹ค๋ฉด Physical AI๋ฅผ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์„๊นŒ์š”? ์  ์Šจ ํ™ฉ์€ ์„ธ ๊ฐ€์ง€ ์ปดํ“จํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค.

1) Training Computer

  • AI ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐ์ดํ„ฐ์„ผํ„ฐ๊ธ‰ ์Šˆํผ์ปดํ“จํ„ฐ์ž…๋‹ˆ๋‹ค. DGX SuperPOD ๊ฐ™์€ ๋Œ€๊ทœ๋ชจ GPU ํด๋Ÿฌ์Šคํ„ฐ๊ฐ€ ์—ฌ๊ธฐ์— ํ•ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

2) Inference Computer

  • ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์‹ค์ œ ๋กœ๋ด‡์ด๋‚˜ ์ฐจ๋Ÿ‰์—์„œ ์‹คํ–‰ํ•˜๋Š” Edge ์ปดํ“จํ„ฐ์ž…๋‹ˆ๋‹ค. NVIDIA Orin, Thor, Jetson ๊ฐ™์€ ์ž„๋ฒ ๋””๋“œ AI ์นฉ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

3) Simulation Computer

โ€” ์—ฌ๊ธฐ๊ฐ€ ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค. AI๊ฐ€ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์—์„œ ํ–‰๋™ํ•˜๊ธฐ ์ „์— ๊ฐ€์ƒ ํ™˜๊ฒฝ์—์„œ ๋จผ์ € ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•ด๋ณผ ์ˆ˜ ์žˆ๋Š” ์ปดํ“จํ„ฐ์ž…๋‹ˆ๋‹ค. NVIDIA Omniverse๊ฐ€ ์ด ์—ญํ• ์„ ๋‹ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

โ€œHow does an AI know that the actions that itโ€™s performing is consistent with what it should do if it doesnโ€™t have the ability to simulate the response of the physical world back on its actions?โ€

AI๊ฐ€ ์ž์‹ ์˜ ํ–‰๋™ ๊ฒฐ๊ณผ๋ฅผ ๋ฏธ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•  ์ˆ˜ ์—†๋‹ค๋ฉด, ์–ด๋–ป๊ฒŒ ์˜ฌ๋ฐ”๋ฅธ ํ–‰๋™์„ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”? ์ด๊ฒƒ์ด NVIDIA๊ฐ€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ปดํ“จํ„ฐ๊ฐ€ ํ•„์ˆ˜๋ผ๊ณ  ์ฃผ์žฅํ•˜๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.

6.3 ํ•ต์‹ฌ ์†Œํ”„ํŠธ์›จ์–ด ์Šคํƒ

NVIDIA๋Š” Physical AI๋ฅผ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์Šคํƒ์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค:

  • Omniverse: ๋ฌผ๋ฆฌ ๋ฒ•์น™ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”Œ๋žซํผ, Digital Twin ๊ตฌ์ถ•
  • Cosmos: ๋ฌผ๋ฆฌ ์„ธ๊ณ„์˜ ์ž‘๋™ ๋ฐฉ์‹์„ ์ดํ•ดํ•˜๋Š” World Foundation Model
  • Isaac GR00T: ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์šฉ Vision-Language-Action ๋ชจ๋ธ
  • Alpamayo: ์ž์œจ์ฃผํ–‰ AI ๋ชจ๋ธ (์ด๋ฒˆ CES์—์„œ ๋ฐœํ‘œ)

์ด ์Šคํƒ์„ ํ†ตํ•ด AI๋Š” ๊ฐ€์ƒ ์„ธ๊ณ„์—์„œ ์ถฉ๋ถ„ํžˆ ํ•™์Šตํ•˜๊ณ , ์‹ค์ œ ์„ธ๊ณ„์— ๋ฐฐํฌ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


  1. Cosmos: World Foundation Model

7.1 Cosmos๋ž€?

LLM์ด ์–ธ์–ด๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ชจ๋ธ์ด๋ผ๋ฉด, Cosmos๋Š” ๋ฌผ๋ฆฌ ์„ธ๊ณ„๋ฅผ ์ดํ•ดํ•˜๋Š” Foundation Model์ž…๋‹ˆ๋‹ค.

์  ์Šจ ํ™ฉ์€ ์ด๋ฅผ โ€œWorld Foundation Modelโ€์ด๋ผ ๋ช…๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค. ChatGPT๊ฐ€ ํ…์ŠคํŠธ๋กœ ํ•™์Šตํ•ด์„œ ์–ธ์–ด์˜ ๊ทœ์น™์„ ๋ฐฐ์šฐ๋“ฏ, Cosmos๋Š” ๋น„๋””์˜ค๋กœ ํ•™์Šตํ•ด์„œ ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ๋ฐฐ์›๋‹ˆ๋‹ค.

Cosmos์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ:

  • ์ธํ„ฐ๋„ท ๊ทœ๋ชจ์˜ ๋น„๋””์˜ค (2,000๋งŒ ์‹œ๊ฐ„ ๋ถ„๋Ÿ‰)
  • ์‹ค์ œ ์ž์œจ์ฃผํ–‰ ์ฃผํ–‰ ๋ฐ์ดํ„ฐ
  • ๋กœ๋ณดํ‹ฑ์Šค ์กฐ์ž‘ ๋ฐ์ดํ„ฐ
  • Omniverse 3D ์‹œ๋ฎฌ๋ ˆ์ด์…˜

Cosmos๋Š” ์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด โ€œ๋ฌผ์ฒด๊ฐ€ ๋–จ์–ด์ง€๋ฉด ์•„๋ž˜๋กœ ๊ฐ„๋‹คโ€, โ€œ์ฐจ๊ฐ€ ๊ธ‰ํšŒ์ „ํ•˜๋ฉด ๊ด€์„ฑ์ด ์ž‘์šฉํ•œ๋‹คโ€ ๊ฐ™์€ ๋ฌผ๋ฆฌ์  ์ƒ์‹์„ ์Šค์Šค๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

7.2 Cosmos์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ

Cosmos๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋“ค์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1) Text-to-World Generation

  • 3D ์”ฌ์„ ํ…์ŠคํŠธ๋กœ ์„ค๋ช…ํ•˜๋ฉด ๋ฌผ๋ฆฌ ๋ฒ•์น™์— ๋งž๋Š” ๋น„๋””์˜ค๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด โ€œ๋น„ ์˜ค๋Š” ๋ฐค, ๊ต์ฐจ๋กœ์—์„œ ํŠธ๋Ÿญ์ด ์ขŒํšŒ์ „ํ•œ๋‹คโ€๊ณ  ์ž…๋ ฅํ•˜๋ฉด, ๋น—๋ฌผ ๋ฐ˜์‚ฌ, ํ—ค๋“œ๋ผ์ดํŠธ ์‚ฐ๋ž€, ํƒ€์ด์–ด ๋งˆ์ฐฐ๊นŒ์ง€ ๊ณ ๋ คํ•œ ์˜์ƒ์ด ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.

2) Video-to-World Prediction

  • ๋‹จ์ผ ์ด๋ฏธ์ง€๋‚˜ ์งง์€ ๋น„๋””์˜ค๋ฅผ ์ž…๋ ฅํ•˜๋ฉด โ€œ๋‹ค์Œ์— ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚ ์ง€โ€ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค. ์ž์œจ์ฃผํ–‰์ฐจ ์•ž์— ๋ณดํ–‰์ž๊ฐ€ ๋ณด์ด๋ฉด, ๊ทธ ๋ณดํ–‰์ž๊ฐ€ ์–ด๋–ค ๊ฒฝ๋กœ๋กœ ์ด๋™ํ• ์ง€ ์—ฌ๋Ÿฌ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•ฉ๋‹ˆ๋‹ค.

3) Edge Case Reasoning

  • ์‹ค์ œ๋กœ ๊ฑฐ์˜ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ์œ„ํ—˜ ์ƒํ™ฉ(๊ฐ‘์ž๊ธฐ ํŠ€์–ด๋‚˜์˜ค๋Š” ๋™๋ฌผ, ์—ญ์ฃผํ–‰ ์ฐจ๋Ÿ‰ ๋“ฑ)์„ ์ƒ์„ฑํ•˜๊ณ  ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ Edge Case๋Š” ์‹ค์ œ ๋ฐ์ดํ„ฐ๋กœ ์ˆ˜์ง‘ํ•˜๊ธฐ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

4) Closed-loop Simulation

  • AI๊ฐ€ ํ–‰๋™์„ ์ทจํ•˜๋ฉด โ†’ ์„ธ๊ณ„๊ฐ€ ๋ฐ˜์‘ํ•˜๊ณ  โ†’ ๊ทธ ๋ฐ˜์‘์„ ๋ณด๊ณ  AI๊ฐ€ ๋‹ค์‹œ ํ–‰๋™ํ•˜๋Š” ์ƒํ˜ธ์ž‘์šฉ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡์ด ๋ฌผ๊ฑด์„ ์ง‘์œผ๋ฉด ๋ฌผ๊ฑด์ด ์›€์ง์ด๊ณ , ๊ทธ ์›€์ง์ž„์„ ๋ณด๊ณ  ๋กœ๋ด‡์ด ๋‹ค์Œ ๋™์ž‘์„ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.

7.3 ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ: Compute๋ฅผ Data๋กœ ์ „ํ™˜

Physical AI ๊ฐœ๋ฐœ์˜ ๊ฐ€์žฅ ํฐ ๋ณ‘๋ชฉ์€ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ์ž…๋‹ˆ๋‹ค.

์ž์œจ์ฃผํ–‰์ฐจ๋ฅผ ํ•™์Šต์‹œํ‚ค๋ ค๋ฉด ์ˆ˜์‹ญ์–ต ๋งˆ์ผ์˜ ์ฃผํ–‰ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ ๊ทธ๋งŒํผ ์šด์ „ํ•ด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๋Š” ๊ฒƒ์€ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์‚ฌ๊ณ  ์ƒํ™ฉ ๊ฐ™์€ ์œ„ํ—˜ํ•œ Edge Case๋Š” ์‹ค์ œ๋กœ ์ˆ˜์ง‘ํ•  ์ˆ˜๋„ ์—†์Šต๋‹ˆ๋‹ค.

โ€œThe challenge is clear. The physical world is diverse and unpredictable. Collecting real world training data is slow and costly and itโ€™s never enough. The answer is synthetic data.โ€

์  ์Šจ ํ™ฉ์˜ ํ•ด๊ฒฐ์ฑ…์€ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ(Synthetic Data)์ž…๋‹ˆ๋‹ค. Cosmos๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์ปดํ“จํŒ… ํŒŒ์›Œ๋ฅผ ๋ฐ์ดํ„ฐ๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์›Œํฌํ”Œ๋กœ์šฐ ์˜ˆ์‹œ:

1
2
3
4
5
6
Traffic Simulator (์ฐจ๋Ÿ‰ ๊ถค์ , ์‹ ํ˜ธ๋“ฑ ์ƒํƒœ)
         โ†“
      Cosmos
         โ†“
๋ฌผ๋ฆฌ์ ์œผ๋กœ ํƒ€๋‹นํ•œ 360ยฐ Surround Video
(๋‚ ์”จ, ์กฐ๋ช…, ๋ฐ˜์‚ฌ, ๊ทธ๋ฆผ์ž ๋ชจ๋‘ ํฌํ•จ)

๊ฐ„๋‹จํ•œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์ถœ๋ ฅ์„ Cosmos์— ๋„ฃ์œผ๋ฉด, ์‹ค์ œ ์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•œ ๊ฒƒ ๊ฐ™์€ ๊ณ ํ’ˆ์งˆ ์˜์ƒ์ด ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด ์˜์ƒ์œผ๋กœ ์ž์œจ์ฃผํ–‰ AI๋ฅผ ํ•™์Šต์‹œํ‚ค๋ฉด, ์‹ค์ œ ์ฃผํ–‰ ์—†์ด๋„ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์„ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


  1. Alpamayo: ์ž์œจ์ฃผํ–‰ AI

8.1 Alpamayo ์†Œ๊ฐœ

Alpamayo๋Š” NVIDIA๊ฐ€ ๋ฐœํ‘œํ•œ ์„ธ๊ณ„ ์ตœ์ดˆ์˜ Thinking/Reasoning Autonomous Vehicle AI์ž…๋‹ˆ๋‹ค.

๊ธฐ์กด ์ž์œจ์ฃผํ–‰ AI๊ฐ€ โ€œ์–ด๋–ป๊ฒŒ ์šด์ „ํ• ์ง€โ€๋งŒ ๊ฒฐ์ •ํ–ˆ๋‹ค๋ฉด, Alpamayo๋Š” โ€œ์™œ ๊ทธ๋ ‡๊ฒŒ ์šด์ „ํ•˜๋Š”์ง€โ€๊นŒ์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งˆ์น˜ ์šด์ „ ๊ฐ•์‚ฌ๊ฐ€ โ€œ์ € ๋ณดํ–‰์ž๊ฐ€ ํšก๋‹จ๋ณด๋„๋กœ ํ–ฅํ•˜๊ณ  ์žˆ์œผ๋‹ˆ ์†๋„๋ฅผ ์ค„์—ฌ์•ผ ํ•ดโ€๋ผ๊ณ  ๋งํ•˜๋“ฏ, Alpamayo๋„ ์ž์‹ ์˜ ํŒ๋‹จ ๊ทผ๊ฑฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.

8.2 ํ•ต์‹ฌ ํŠน์ง•

1) End-to-End ํ•™์Šต

์ „ํ†ต์ ์ธ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ์ธ์ง€(Perception) โ†’ ํŒ๋‹จ(Planning) โ†’ ์ œ์–ด(Control)๊ฐ€ ๋ถ„๋ฆฌ๋œ ํŒŒ์ดํ”„๋ผ์ธ ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์„ ๋”ฐ๋กœ ๊ฐœ๋ฐœํ•˜๊ณ  ์—ฐ๊ฒฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

Alpamayo๋Š” ์ด์™€ ๋‹ฌ๋ฆฌ ์นด๋ฉ”๋ผ ์˜์ƒ์„ ์ž…๋ ฅ๋ฐ›์•„ ์กฐํ–ฅ/๊ฐ€์†/์ œ๋™์„ ์ง์ ‘ ์ถœ๋ ฅํ•˜๋Š” End-to-End ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ค‘๊ฐ„ ๋‹จ๊ณ„ ์—†์ด โ€œ๋ณด๋Š” ๊ฒƒโ€์—์„œ โ€œํ–‰๋™โ€์œผ๋กœ ๋ฐ”๋กœ ์—ฐ๊ฒฐ๋ฉ๋‹ˆ๋‹ค.

2) Human Demonstration ํ•™์Šต

Alpamayo๋Š” ์ธ๊ฐ„ ์šด์ „์ž์˜ ์ฃผํ–‰ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ณ  ๋ฐฐ์›๋‹ˆ๋‹ค. ์ˆ™๋ จ๋œ ์šด์ „์ž๊ฐ€ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์—์„œ ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€ ๊ด€์ฐฐํ•˜๊ณ , ๊ทธ ํŒจํ„ด์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

3) Cosmos ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ ํ™œ์šฉ

์•ž์„œ ์†Œ๊ฐœํ•œ Cosmos๋กœ ์ƒ์„ฑํ•œ ํ•ฉ์„ฑ ์ฃผํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํ•™์Šต์— ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ ๊ฒฝํ—˜ํ•˜๊ธฐ ์–ด๋ ค์šด ์œ„ํ—˜ ์ƒํ™ฉ(๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ์žฅ์• ๋ฌผ, ์•…์ฒœํ›„, ์—ญ์ฃผํ–‰ ์ฐจ๋Ÿ‰ ๋“ฑ)๋„ ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋กœ ์ถฉ๋ถ„ํžˆ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

4) Reasoning ์ถœ๋ ฅ

Alpamayo์˜ ๊ฐ€์žฅ ๋…ํŠนํ•œ ํŠน์ง•์ž…๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ โ€œ์ขŒํšŒ์ „ํ•œ๋‹คโ€๊ฐ€ ์•„๋‹ˆ๋ผ โ€œ์ „๋ฐฉ ์‹ ํ˜ธ๊ฐ€ ๋…น์ƒ‰์ด๊ณ , ๋ฐ˜๋Œ€ํŽธ ์ฐจ๋Ÿ‰์ด ๋ฉˆ์ถฐ์žˆ์œผ๋ฉฐ, ๋ณดํ–‰์ž๊ฐ€ ์—†์œผ๋ฏ€๋กœ ์ขŒํšŒ์ „ํ•œ๋‹คโ€์ฒ˜๋Ÿผ ํŒ๋‹จ ๊ทผ๊ฑฐ๋ฅผ ์ž์—ฐ์–ด๋กœ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

8.3 Long-tail ๋ฌธ์ œ ํ•ด๊ฒฐ

์ž์œจ์ฃผํ–‰์˜ ๊ฐ€์žฅ ์–ด๋ ค์šด ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๊ฐ€ Long-tail ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.

์ผ๋ฐ˜์ ์ธ ์ฃผํ–‰ ์ƒํ™ฉ(์ง์ง„, ์ฐจ์„  ๋ณ€๊ฒฝ, ์‹ ํ˜ธ ๋Œ€๊ธฐ)์€ ๋ฐ์ดํ„ฐ๋„ ๋งŽ๊ณ  ์ฒ˜๋ฆฌํ•˜๊ธฐ ์‰ฝ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋“œ๋ฌผ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ์˜ˆ์™ธ ์ƒํ™ฉ(๋„๋กœ ์œ„ ๋–จ์–ด์ง„ ํ™”๋ฌผ, ๊ฐ‘์ž๊ธฐ ๋›ฐ์–ด๋“œ๋Š” ๋™๋ฌผ, ๊ณต์‚ฌ ์ค‘ ์ž„์‹œ ์‹ ํ˜ธ์ฒด๊ณ„)์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ฑฐ์˜ ์—†๊ณ , ์ด๋Ÿฐ ์ƒํ™ฉ์ด ๋ฌดํ•œํžˆ ๋‹ค์–‘ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด โ€œLong-tailโ€์ž…๋‹ˆ๋‹ค โ€” ๋นˆ๋„ ๊ทธ๋ž˜ํ”„์˜ ๊ธด ๊ผฌ๋ฆฌ ๋ถ€๋ถ„์— ํ•ด๋‹นํ•˜๋Š” ์ˆ˜๋งŽ์€ ํฌ๊ท€ ์ƒํ™ฉ๋“ค.

โ€œItโ€™s impossible for us to simply collect every single possible scenarioโ€ฆ However, it is very likely that every scenario if decomposed into a whole bunch of other smaller scenarios are quite normal for you to understand.โ€

์  ์Šจ ํ™ฉ์˜ ํ•ต์‹ฌ ํ†ต์ฐฐ์€ ์ด๋ ‡์Šต๋‹ˆ๋‹ค: ์•„๋ฌด๋ฆฌ ๋“œ๋ฌธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ผ๋„ ์ต์ˆ™ํ•œ ํ•˜์œ„ ๋ฌธ์ œ๋“ค๋กœ ๋ถ„ํ•ดํ•˜๋ฉด ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด โ€œ๊ณต์‚ฌ์žฅ ์˜† ๋น„ํฌ์žฅ ๋„๋กœ์—์„œ ์—ญ์ฃผํ–‰ ์ž์ „๊ฑฐ๋ฅผ ํ”ผํ•˜๋Š” ์ƒํ™ฉโ€์€ ์ฒ˜์Œ ๋ณด๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ฅผ ๋ถ„ํ•ดํ•˜๋ฉด:

  • ๋น„ํฌ์žฅ ๋„๋กœ ์ฃผํ–‰ (ํ•™์Šต๋œ ํŒจํ„ด)
  • ์žฅ์• ๋ฌผ ํšŒํ”ผ (ํ•™์Šต๋œ ํŒจํ„ด)
  • ์ž์ „๊ฑฐ ๊ถค์  ์˜ˆ์ธก (ํ•™์Šต๋œ ํŒจํ„ด)

โ€ฆ์˜ ์กฐํ•ฉ์ด ๋ฉ๋‹ˆ๋‹ค. Alpamayo๋Š” Reasoning ๋Šฅ๋ ฅ์œผ๋กœ ์ด๋Ÿฐ ๋ถ„ํ•ด์™€ ์กฐํ•ฉ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

8.4 ๋ฐ๋ชจ

์  ์Šจ ํ™ฉ์€ ์‹ค์ œ Alpamayo ์ฃผํ–‰ ์˜์ƒ์„ ๊ณต๊ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.

์˜์ƒ์—์„œ๋Š” One-shot, no hands โ€” ์ฆ‰ ์šด์ „์ž๊ฐ€ ํ•ธ๋“ค์—์„œ ์†์„ ๋–ผ๊ณ  ๊ฐœ์ž… ์—†์ด ์ฃผํ–‰ํ•˜๋Š” ๋ชจ์Šต์ด ์‹œ์—ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ™”๋ฉด์—๋Š” Alpamayo์˜ ์‹ค์‹œ๊ฐ„ Reasoning ์ถœ๋ ฅ์ด ํ•จ๊ป˜ ํ‘œ์‹œ๋˜์–ด, AI๊ฐ€ ์™œ ๊ทธ๋Ÿฐ ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

8.5 ์•ˆ์ „ ์•„ํ‚คํ…์ฒ˜: Dual Stack

์ž์œจ์ฃผํ–‰์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ์•ˆ์ „์ž…๋‹ˆ๋‹ค. NVIDIA๋Š” ์ด์ค‘ ์•ˆ์ „ ๊ตฌ์กฐ(Dual Stack)๋ฅผ ์ฑ„ํƒํ–ˆ์Šต๋‹ˆ๋‹ค.

โ€œAll safety systems should have diversity and redundancy.โ€

Alpamayo Stack:

  • End-to-End ํ•™์Šต ๊ธฐ๋ฐ˜์œผ๋กœ, ๋›ฐ์–ด๋‚œ ์ฃผํ–‰ ์Šคํ‚ฌ๊ณผ ์œ ์—ฐํ•œ ์ƒํ™ฉ ๋Œ€์‘์ด ์žฅ์ ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ ๊ฒฝ๋ง ํŠน์„ฑ์ƒ ์™œ ๊ทธ๋Ÿฐ ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€ ์™„๋ฒฝํžˆ ์ถ”์ ํ•˜๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Classical AV Stack:

  • NVIDIA๊ฐ€ 6~7๋…„๊ฐ„ ๊ฐœ๋ฐœํ•ด์˜จ ์ „ํ†ต์  ์ž์œจ์ฃผํ–‰ ์Šคํƒ์ž…๋‹ˆ๋‹ค. ๊ทœ์น™ ๊ธฐ๋ฐ˜์œผ๋กœ ๋™์ž‘ํ•˜์—ฌ ๋ชจ๋“  ๊ฒฐ์ •์„ ์™„๋ฒฝํžˆ ์ถ”์ (trace)ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Policy & Safety Evaluator:

  • ๋‘ ์Šคํƒ์˜ ์ถœ๋ ฅ์„ ๋น„๊ตํ•˜๊ณ , ์ƒํ™ฉ์— ๋”ฐ๋ผ ์–ด๋–ค ์Šคํƒ์˜ ๊ฒฐ์ •์„ ๋”ฐ๋ฅผ์ง€ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. ๋‘˜์˜ ๊ฒฐ์ •์ด ์ถฉ๋Œํ•˜๋ฉด ๋” ์•ˆ์ „ํ•œ ์ชฝ์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.

์ด ๊ตฌ์กฐ์˜ ํ•ต์‹ฌ์€ ๋‹ค์–‘์„ฑ(Diversity)๊ณผ ์ค‘๋ณต์„ฑ(Redundancy)์ž…๋‹ˆ๋‹ค. ํ•œ ์‹œ์Šคํ…œ์ด ์‹คํŒจํ•ด๋„ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์ด ๋ฐฑ์—…ํ•˜๊ณ , ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ™์€ ์‹ค์ˆ˜๋ฅผ ๋™์‹œ์— ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์Šต๋‹ˆ๋‹ค.

8.6 Mercedes-Benz ํŒŒํŠธ๋„ˆ์‹ญ

Alpa-mayo์˜ ์ฒซ ์ƒ์šฉํ™” ํŒŒํŠธ๋„ˆ๋Š” Mercedes-Benz์ž…๋‹ˆ๋‹ค.

Mercedes-Benz CLA๋Š” NCAP์—์„œ โ€œ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ์•ˆ์ „ํ•œ ์ž๋™์ฐจโ€ ๋“ฑ๊ธ‰์„ ๋ฐ›์€ ์ฐจ๋Ÿ‰์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์— NVIDIA์˜ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ ์ด ํƒ‘์žฌ๋ฉ๋‹ˆ๋‹ค.

ํ”„๋กœ์„ธ์„œ ๋กœ๋“œ๋งต:

  • ํ˜„์žฌ: Dual NVIDIA Orin
  • ์ฐจ์„ธ๋Œ€: Dual NVIDIA Thor (Orin ๋Œ€๋น„ ๋Œ€ํญ ์„ฑ๋Šฅ ํ–ฅ์ƒ)

์ถœ์‹œ ์ผ์ •:

  • 2026๋…„ Q1: ๋ฏธ๊ตญ ์ถœ์‹œ
  • 2026๋…„ Q2: ์œ ๋Ÿฝ ์ถœ์‹œ
  • 2026๋…„ Q3~Q4: ์•„์‹œ์•„ ์ถœ์‹œ

8.7 ์˜คํ”ˆ์†Œ์Šค ๊ณต๊ฐœ

๋†€๋ž๊ฒŒ๋„ ์  ์Šจ ํ™ฉ์€ Alpamayo๋ฅผ ์˜คํ”ˆ์†Œ์Šค๋กœ ๊ณต๊ฐœํ•œ๋‹ค๊ณ  ๋ฐœํ‘œํ–ˆ์Šต๋‹ˆ๋‹ค.

โ€œAlpamayo today is open sourcedโ€ฆ This incredible body of work took several thousand people.โ€

์ˆ˜์ฒœ ๋ช…์˜ ์—”์ง€๋‹ˆ์–ด๊ฐ€ ์ˆ˜๋…„๊ฐ„ ๊ฐœ๋ฐœํ•œ ์ž์œจ์ฃผํ–‰ AI๋ฅผ ๊ณต๊ฐœํ•˜๋Š” ๊ฒƒ์€ ์ด๋ก€์ ์ธ ๊ฒฐ์ •์ž…๋‹ˆ๋‹ค. NVIDIA๊ฐ€ ์ž์œจ์ฃผํ–‰ ์ƒํƒœ๊ณ„ ์ „์ฒด๋ฅผ ํ‚ค์šฐ๋ ค๋Š” ์ „๋žต์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค โ€” ๋” ๋งŽ์€ ๊ธฐ์—…์ด NVIDIA ํ”Œ๋žซํผ ์œ„์—์„œ ์ž์œจ์ฃผํ–‰์„ ๊ฐœ๋ฐœํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.


  1. ๋กœ๋ณดํ‹ฑ์Šค์˜ ๋ฏธ๋ž˜

9.1 ๋กœ๋ด‡ ๋ฐ๋ชจ

์  ์Šจ ํ™ฉ์€ ๊ธฐ์กฐ์—ฐ์„ค ๋ฌด๋Œ€์— ์ž‘์€ ๋กœ๋ด‡๋“ค์„ ์ง์ ‘ ์ดˆ๋Œ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋กœ๋ด‡๋“ค์€ NVIDIA์˜ ์—ฃ์ง€ AI ํ”Œ๋žซํผ์ธ Jetson ์ปดํ“จํ„ฐ๋ฅผ ํƒ‘์žฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, Omniverse ํ™˜๊ฒฝ(Isaac Sim, Isaac Lab)์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์‹ค์ œ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์— ๋ฐฐ์น˜๋˜๊ธฐ ์ „์— ๋””์ง€ํ„ธ ํ™˜๊ฒฝ์—์„œ ์ˆ˜๋ฐฑ๋งŒ ๋ฒˆ์˜ ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ๊ฑฐ์ณค๊ธฐ ๋•Œ๋ฌธ์—, ํ˜„์‹ค ์„ธ๊ณ„์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Physical AI์˜ ๊ตฌ์ฒด์ ์ธ ๊ฒฐ๊ณผ๋ฌผ์„ ๋ฌด๋Œ€์—์„œ ์ง์ ‘ ์‹œ์—ฐํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

9.2 ๋กœ๋ด‡ ํŒŒํŠธ๋„ˆ ์ƒํƒœ๊ณ„

์  ์Šจ ํ™ฉ์€ NVIDIA๊ฐ€ ํ˜‘๋ ฅํ•˜๊ณ  ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๋กœ๋ด‡ ๊ธฐ์—…๋“ค์„ ์†Œ๊ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.

ํœด๋จธ๋…ธ์ด๋“œ ๋ฐ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ๋ถ„์•ผ์—์„œ๋Š” Neurobot, Aubot, Agibot, LG, Agility, Boston Dynamics ๋“ฑ์ด NVIDIA ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฐ์—…์šฉ ๋กœ๋ด‡ ๋ถ„์•ผ์—์„œ๋Š” ๋Œ€ํ˜• ๊ฑด์„ค์žฅ๋น„์˜ Caterpillar, ๋ฐฐ๋‹ฌ ๋กœ๋ด‡ Surf Robot(Uber Eats ๋ฐฐ๋‹ฌ์— ์‚ฌ์šฉ), ์ˆ˜์ˆ  ๋กœ๋ด‡, Frana ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ, Universal Robotics ๋“ฑ์ด ํŒŒํŠธ๋„ˆ๋กœ ์ฐธ์—ฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

โ€œThis is the next chapterโ€ฆ but itโ€™s not just about the robots in the end.โ€

์  ์Šจ ํ™ฉ์˜ ์ด ๋ฐœ์–ธ์€ ๋กœ๋ด‡ ๊ทธ ์ž์ฒด๊ฐ€ ๋ชฉํ‘œ๊ฐ€ ์•„๋‹ˆ๋ผ, ๋กœ๋ด‡์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” Physical AI ์ƒํƒœ๊ณ„ ์ „์ฒด๊ฐ€ NVIDIA์˜ ๋‹ค์Œ ์„ฑ์žฅ ๋™๋ ฅ์ด๋ผ๋Š” ์ ์„ ๊ฐ•์กฐํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋กœ๋ด‡์€ Physical AI๊ฐ€ ํ˜„์‹ค ์„ธ๊ณ„์— ๋‚˜ํƒ€๋‚˜๋Š” ํ•˜๋‚˜์˜ ํ˜•ํƒœ์ผ ๋ฟ์ž…๋‹ˆ๋‹ค.


  1. ์‚ฐ์—… ํŒŒํŠธ๋„ˆ์‹ญ: EDA & Manufacturing

10.1 ๋ฐ˜๋„์ฒด ์„ค๊ณ„ ๋„๊ตฌ ํ˜์‹ 

Physical AI์™€ AI Physics ๊ธฐ์ˆ ์€ ๋กœ๋ด‡๊ณผ ์ž์œจ์ฃผํ–‰์—๋งŒ ์ ์šฉ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹™๋‹ˆ๋‹ค. ๋ฐ˜๋„์ฒด ์„ค๊ณ„ ์‚ฐ์—…๋„ ์ด ๊ธฐ์ˆ ๋“ค๋กœ ํ˜์‹ ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฐ˜๋„์ฒด ์„ค๊ณ„ ๋ถ„์•ผ์˜ ์–‘๋Œ€ ์‚ฐ๋งฅ์ธ Cadence์™€ Synopsys๊ฐ€ NVIDIA์™€ ํ˜‘๋ ฅํ•ฉ๋‹ˆ๋‹ค. Cadence๋Š” Physical Design๊ณผ Emulation ๋ถ„์•ผ์—์„œ, Synopsys๋Š” Logic Design๊ณผ IP ๋ถ„์•ผ์—์„œ ๊ฐ๊ฐ CUDA-X์™€ Physical AI๋ฅผ ํ†ตํ•ฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์นฉ ์„ค๊ณ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๊ฐ€์†๋˜๊ณ , AI ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค.

โ€œIn the future, weโ€™re going to design your chips inside Cadence and inside Synopsys. Weโ€™re going to design your systems and emulate the whole thing and simulate everything inside these tools.โ€

๋ฏธ๋ž˜์—๋Š” ์นฉ ์„ค๊ณ„๋ถ€ํ„ฐ ์‹œ์Šคํ…œ ์„ค๊ณ„, ์ „์ฒด ์—๋ฎฌ๋ ˆ์ด์…˜๊นŒ์ง€ ๋ชจ๋‘ ์ด ๋„๊ตฌ๋“ค ์•ˆ์—์„œ ์ด๋ฃจ์–ด์ง„๋‹ค๋Š” ๋น„์ „์ž…๋‹ˆ๋‹ค.

10.2 Siemens ํŒŒํŠธ๋„ˆ์‹ญ (์‹ ๊ทœ ๋ฐœํ‘œ)

์ด๋ฒˆ CES์—์„œ ์ƒˆ๋กญ๊ฒŒ ๋ฐœํ‘œ๋œ ํŒŒํŠธ๋„ˆ์‹ญ์€ Siemens์™€์˜ ํ˜‘๋ ฅ์ž…๋‹ˆ๋‹ค.

Siemens๋Š” ๊ฑฐ์˜ 200๋…„ ์—ญ์‚ฌ๋ฅผ ๊ฐ€์ง„ ์„ธ๊ณ„์ ์ธ ์‚ฐ์—… ๊ธฐ์ˆ  ๊ธฐ์—…์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ํ˜‘๋ ฅ์„ ํ†ตํ•ด Siemens์˜ ๋„๊ตฌ๋“ค์— CUDA-X, Physical AI, Agentic AI (Nemo, Nemotron), ๊ทธ๋ฆฌ๊ณ  Omniverse๊ฐ€ ํ†ตํ•ฉ๋ฉ๋‹ˆ๋‹ค.

์ ์šฉ ๋ฒ”์œ„๋Š” ๊ด‘๋ฒ”์œ„ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋„์ฒด ์„ค๊ณ„ ์ž๋™ํ™”(EDA), ์ปดํ“จํ„ฐ ์ง€์› ์—”์ง€๋‹ˆ์–ด๋ง(CAE), Digital Twin ๋„๊ตฌ ๋ฐ ํ”Œ๋žซํผ ์ „๋ฐ˜์— ๊ฑธ์ณ NVIDIA ๊ธฐ์ˆ ์ด ๋…น์•„๋“ค์–ด๊ฐ‘๋‹ˆ๋‹ค.

โ€œFor nearly two centuries, Siemens has built the worldโ€™s industries. And now it is reinventing it for the age of AI.โ€

10.3 ๋น„์ „: ์™„์ „ํ•œ ๋””์ง€ํ„ธ ์ œ์กฐ

์  ์Šจ ํ™ฉ์€ ๋ฌด๋Œ€ ์œ„์˜ ๋กœ๋ด‡๋“ค์—๊ฒŒ ์ง์ ‘ ๋งํ•˜๋“ฏ ๋ฏธ๋ž˜ ๋น„์ „์„ ์„ค๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค.

๊ทธ์˜ ๋น„์ „์€ ๋ช…ํ™•ํ•ฉ๋‹ˆ๋‹ค. ์นฉ์„ ์ปดํ“จํ„ฐ ์•ˆ์—์„œ ์„ค๊ณ„ํ•˜๊ณ , ์ œ์กฐ ๋ผ์ธ๋„ ์ปดํ“จํ„ฐ ์•ˆ์—์„œ ์„ค๊ณ„ํ•˜๊ณ , ๋ชจ๋“  ๊ฒƒ์„ ์ปดํ“จํ„ฐ ์•ˆ์—์„œ ํ…Œ์ŠคํŠธํ•˜๊ณ  ํ‰๊ฐ€ํ•œ ํ›„์—์•ผ ๋น„๋กœ์†Œ ์ค‘๋ ฅ์„ ๊ฒฝํ—˜ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. โ€œ์ค‘๋ ฅ์„ ๊ฒฝํ—˜ํ•œ๋‹คโ€๋Š” ํ‘œํ˜„์€ ์‹ค์ œ ๋ฌผ๋ฆฌ ์„ธ๊ณ„์— ์ œํ’ˆ์ด ๋‚˜์˜จ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.

โ€œYouโ€™re going to be designed in a computer. Youโ€™re going to be made in a computer. Youโ€™re going to be tested and evaluated in a computer long before you have to spend any time dealing with gravity.โ€

Digital Twin๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ์ œ์กฐ์—…์˜ ๊ธฐ๋ณธ์ด ๋˜๋Š” ๋ฏธ๋ž˜๋ฅผ ๊ทธ๋ฆฐ ๊ฒƒ์ž…๋‹ˆ๋‹ค.


  1. Vera Rubin: ์ฐจ์„ธ๋Œ€ AI ์Šˆํผ์ปดํ“จํ„ฐ

11.1 ๋ช…๋ช…์˜ ์˜๋ฏธ

Vera Rubin์€ ๋ฏธ๊ตญ์˜ ์ฒœ๋ฌธํ•™์ž ์ด๋ฆ„์—์„œ ๋”ฐ์™”์Šต๋‹ˆ๋‹ค.

๊ทธ๋…€๋Š” ์€ํ•˜ ์™ธ๊ณฝ ๋ณ„๋“ค์˜ ํšŒ์ „ ์†๋„๋ฅผ ๊ด€์ธกํ•˜๋˜ ์ค‘ ๊ธฐ์กด ๋‰ดํ„ด ๋ฌผ๋ฆฌํ•™์œผ๋กœ๋Š” ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋Š” ํ˜„์ƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์€ํ•˜ ์™ธ๊ณฝ์˜ ๋ณ„๋“ค์ด ์˜ˆ์ƒ๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๊ฒŒ ํšŒ์ „ํ•˜๊ณ  ์žˆ์—ˆ๊ณ , ์ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ๋ณผ ์ˆ˜ ์—†๋Š” ์–ด๋–ค ๋ฌผ์งˆ์ด ์กด์žฌํ•œ๋‹ค๋Š” ์ฆ๊ฑฐ์˜€์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ์•”ํ‘๋ฌผ์งˆ(Dark Matter)์˜ ์กด์žฌ๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๋ฐœ๊ฒฌํ•œ ์ฒซ ์‚ฌ๋ก€์ž…๋‹ˆ๋‹ค.

NVIDIA๊ฐ€ ์ด ์ด๋ฆ„์„ ์„ ํƒํ•œ ๊ฒƒ์€ Vera Rubin์ด ๊ธฐ์กด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋’คํ”๋“  ๊ณผํ•™์ž์˜€๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

11.2 ์™œ Vera Rubin์ด ํ•„์š”ํ•œ๊ฐ€?

์  ์Šจ ํ™ฉ์€ AI ์—ฐ์‚ฐ ์ˆ˜์š”๊ฐ€ ์„ธ ๊ฐ€์ง€ ์š”์ธ์— ์˜ํ•ด ๋™์‹œ์— ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์„ค๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค.

  1. ์ฒซ์งธ, AI ๋ชจ๋ธ์˜ ํฌ๊ธฐ๊ฐ€ ๋งค๋…„ ์•ฝ 10๋ฐฐ์”ฉ ์ปค์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋” ํฌ๊ณ  ๋” ์ •๊ตํ•œ ๋ชจ๋ธ์ด ๊ณ„์† ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค.
  2. ๋‘˜์งธ, Test-Time Scaling์˜ ๋“ฑ์žฅ์œผ๋กœ ์ถ”๋ก  ์‹œ ์ƒ์„ฑํ•˜๋Š” ํ† ํฐ ์ˆ˜๊ฐ€ ๋งค๋…„ ์•ฝ 5๋ฐฐ์”ฉ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. o1, o3 ๊ฐ™์€ Reasoning ๋ชจ๋ธ์€ ๋‹ต๋ณ€ ํ•˜๋‚˜์— ์ˆ˜์ฒœ ๊ฐœ์˜ ํ† ํฐ์„ ๋‚ด๋ถ€์ ์œผ๋กœ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
  3. ์…‹์งธ, ๊ฒฝ์Ÿ ์‹ฌํ™”๋กœ ํ† ํฐ๋‹น ๋น„์šฉ์ด ๋งค๋…„ 1/10๋กœ ๋–จ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋น„์šฉ์ด ๋–จ์–ด์ง€๋ฉด ์‚ฌ์šฉ๋Ÿ‰์ด ๋Š˜์–ด๋‚˜๊ณ , ์ด ์—ฐ์‚ฐ ์ˆ˜์š”๋Š” ์˜คํžˆ๋ ค ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

โ€œAll of these things are simultaneously happening at the same time. And so we decided that we have to advance the state-of-the-art of computation every single year. Not one year left behind.โ€

์ด ์„ธ ๊ฐ€์ง€๊ฐ€ ๋™์‹œ์— ์ผ์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์—, NVIDIA๋Š” ๋งค๋…„ ์—ฐ์‚ฐ ๊ธฐ์ˆ ์„ ํ˜์‹ ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฒฐ๋ก  ๋‚ด๋ ธ์Šต๋‹ˆ๋‹ค.

11.3 ์ œํ’ˆ ๋กœ๋“œ๋งต

NVIDIA์˜ ๋ฐ์ดํ„ฐ์„ผํ„ฐ GPU ๋กœ๋“œ๋งต์„ ๋ณด๋ฉด ์†๋„๊ฐ€ ๋†€๋ž์Šต๋‹ˆ๋‹ค.

์•ฝ 1.5๋…„ ์ „ GB200 ์ถœํ•˜๊ฐ€ ์‹œ์ž‘๋˜์—ˆ๊ณ , ํ˜„์žฌ๋Š” GB300์ด ํ’€์Šค์ผ€์ผ ์–‘์‚ฐ ์ค‘์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์˜ค๋Š˜ ๋ฐœํ‘œ์—์„œ Vera Rubin์˜ ํ’€์Šค์ผ€์ผ ์–‘์‚ฐ ๋Œ์ž…์„ ์„ ์–ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฑฐ์˜ 1๋…„ ๋‹จ์œ„๋กœ ์ƒˆ๋กœ์šด ์„ธ๋Œ€๊ฐ€ ์–‘์‚ฐ์— ๋“ค์–ด๊ฐ€๋Š” ์…ˆ์ž…๋‹ˆ๋‹ค.

11.4 Extreme Co-Design: 6๊ฐœ ์นฉ ๋™์‹œ ์žฌ์„ค๊ณ„

NVIDIA ๋‚ด๋ถ€์—๋Š” ์˜ค๋žซ๋™์•ˆ โ€œํ•œ ์„ธ๋Œ€์— 1~2๊ฐœ ์นฉ๋งŒ ๋ณ€๊ฒฝํ•œ๋‹คโ€๋Š” ๊ทœ์น™์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณต์žก์„ฑ์„ ๊ด€๋ฆฌํ•˜๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด์„œ์ž…๋‹ˆ๋‹ค.

ํ•˜์ง€๋งŒ Vera Rubin์—์„œ๋Š” ์ด ๊ทœ์น™์„ ๊นผ์Šต๋‹ˆ๋‹ค. 6๊ฐœ ์นฉ ๋ชจ๋‘๋ฅผ ๋™์‹œ์— ์žฌ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ด์œ ๋Š” ๋ช…ํ™•ํ•ฉ๋‹ˆ๋‹ค. Mooreโ€™s Law๊ฐ€ ๋‘”ํ™”๋˜๋ฉด์„œ ํŠธ๋žœ์ง€์Šคํ„ฐ ์ˆ˜ ์ฆ๊ฐ€๋งŒ์œผ๋กœ๋Š” ์„ธ๋Œ€๋‹น 10๋ฐฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ๋ถˆ๊ฐ€๋Šฅํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ๊ฐœ๋ณ„ ์นฉ์˜ ์ ์ง„์  ๊ฐœ์„ ์œผ๋กœ๋Š” AI ์ˆ˜์š” ์ฆ๊ฐ€ ์†๋„๋ฅผ ๋”ฐ๋ผ์žก์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ Extreme Co-Design โ€” ์นฉ, ํŒจํ‚ค์ง•, ๋„คํŠธ์›Œํฌ, ์†Œํ”„ํŠธ์›จ์–ด ์Šคํƒ ์ „์ฒด๋ฅผ ๋™์‹œ์— ํ˜์‹ ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ด ํ•„์ˆ˜๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

โ€œIt is impossible to keep up with those kind of ratesโ€ฆ unless we deployed aggressive extreme code design, basically innovating across all of the chips across the entire stack all at the same time.โ€

11.5 6๊ฐœ์˜ ํ•ต์‹ฌ ์นฉ

1. Vera CPU

๊ฐ€์žฅ ๋จผ์ € ์†Œ๊ฐœ๋œ ์ปดํฌ๋„ŒํŠธ์ž…๋‹ˆ๋‹ค. NVIDIA๊ฐ€ ์ง์ ‘ ์„ค๊ณ„ํ•œ ์„œ๋ฒ„์šฉ CPU๋กœ, ์ด์ „ ์„ธ๋Œ€ ๋Œ€๋น„ 2๋ฐฐ์˜ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

  • 88๊ฐœ ์ฝ”์–ด, 176 ์Šค๋ ˆ๋“œ ๊ตฌ์„ฑ
  • Spatial Multi-threading ๋ฐฉ์‹ ์ ์šฉ์œผ๋กœ ๊ฐ ์Šค๋ ˆ๋“œ๊ฐ€ ํ’€ ์„ฑ๋Šฅ ๋ฐœํœ˜
  • ์ „๋ ฅ ์ œํ•œ ํ™˜๊ฒฝ์—์„œ ๊ฒฝ์Ÿ CPU ๋Œ€๋น„ ์™€ํŠธ๋‹น ์„ฑ๋Šฅ 2๋ฐฐ

2. Rubin GPU

Vera CPU ๋ฐ”๋กœ ๋‹ค์Œ์— ์†Œ๊ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. Vera์™€ Rubin์€ ์ฒ˜์Œ๋ถ€ํ„ฐ ์–‘๋ฐฉํ–ฅ coherent ๋ฐ์ดํ„ฐ ๊ณต์œ ๋ฅผ ์œ„ํ•ด Co-Design๋˜์—ˆ๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ์Šต๋‹ˆ๋‹ค.

  • Blackwell ๋Œ€๋น„ FP ์„ฑ๋Šฅ 5๋ฐฐ ํ–ฅ์ƒ
  • ํŠธ๋žœ์ง€์Šคํ„ฐ ์ˆ˜๋Š” 1.6๋ฐฐ ์ฆ๊ฐ€์— ๊ทธ์นจ (์•„ํ‚คํ…์ฒ˜ ํ˜์‹ ์˜ ๊ฒฐ๊ณผ)
  • NV FP4 Tensor Core: ๋‹จ์ˆœํ•œ 4๋น„ํŠธ ์—ฐ์‚ฐ์ด ์•„๋‹Œ ์ ์‘ํ˜• ์ •๋ฐ€๋„ ํ”„๋กœ์„ธ์„œ
    • Transformer ๊ฐ ๋ ˆ์ด์–ด์—์„œ ํ•„์š”ํ•œ ์ •๋ฐ€๋„๋ฅผ ํ•˜๋“œ์›จ์–ด ๋ ˆ๋ฒจ์—์„œ ๋™์  ์กฐ์ ˆ
    • ์†Œํ”„ํŠธ์›จ์–ด๋กœ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•œ ์‹ค์‹œ๊ฐ„ ์ •๋ฐ€๋„ ์ ์‘

3. Vera Rubin Compute Board / Compute Tray

๊ฐœ๋ณ„ ์นฉ์€ ์•„๋‹ˆ์ง€๋งŒ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋‹จ์œ„๋กœ ์†Œ๊ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

  • Compute Board: Vera CPU 1๊ฐœ + Rubin GPU 2๊ฐœ + 17,000๊ฐœ ๋ถ€ํ’ˆ
  • Compute Tray: Bluefield-4 DPU 1๊ฐœ + ConnectX-9 NIC 8๊ฐœ + Vera CPU 2๊ฐœ + Rubin GPU 4๊ฐœ
  • ์ผ€์ด๋ธ”, ํ˜ธ์Šค, ํŒฌ ์—†์ด ์™„์ „ํžˆ ์žฌ์„ค๊ณ„๋จ

4. ConnectX-9

Scale-out ๋Œ€์—ญํญ์„ ๋‹ด๋‹นํ•˜๋Š” ๋„คํŠธ์›Œํฌ ์ธํ„ฐํŽ˜์ด์Šค์ž…๋‹ˆ๋‹ค.

  • GPU๋‹น 1.6Tbps์˜ Scale-out ๋Œ€์—ญํญ ์ œ๊ณต
  • ๋ž™ ๊ฐ„ ํ†ต์‹ (East-West ๋„คํŠธ์›Œํฌ) ๋‹ด๋‹น

5. Bluefield-4 DPU

์Šคํ† ๋ฆฌ์ง€์™€ ๋ณด์•ˆ์„ ์˜คํ”„๋กœ๋“œํ•˜์—ฌ ์ปดํ“จํŒ… ์ž์›์ด AI์—๋งŒ ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

  • North-South ํŠธ๋ž˜ํ”ฝ์—์„œ ๊ฐ€์ƒํ™”, ๋ณด์•ˆ, ๋„คํŠธ์›Œํ‚น ๊ธฐ๋Šฅ ์ฒ˜๋ฆฌ
  • KV Cache ์ปจํ…์ŠคํŠธ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์—ญํ•  ์ถ”๊ฐ€ (Vera Rubin์˜ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ)

GPU ๊ฐ„ ๋‚ด๋ถ€ ํ†ต์‹ ์„ ๋‹ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

  • โ€œ์ „ ์„ธ๊ณ„ ์ธํ„ฐ๋„ท๋ณด๋‹ค ๋งŽ์€ ๋ฐ์ดํ„ฐโ€ ์ด๋™ ๊ฐ€๋Šฅ
  • 18๊ฐœ Compute Node ์—ฐ๊ฒฐ, ์ตœ๋Œ€ 72๊ฐœ Rubin GPU๊ฐ€ ํ•˜๋‚˜๋กœ ๋™์ž‘

7. Spectrum-X Ethernet Photonics Switch

๋ฐ์ดํ„ฐ์„ผํ„ฐ ์Šค์ผ€์ผ์˜ ๋„คํŠธ์›Œํฌ ์—ฐ๊ฒฐ์„ ๋‹ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

  • ์„ธ๊ณ„ ์ตœ์ดˆ๋กœ Co-packaged Optics ์ ์šฉ ์ด๋”๋„ท ์Šค์œ„์น˜
  • 512๊ฐœ ๋ ˆ์ธ, ๊ฐ 200Gbps ์†๋„
  • ์ˆ˜์ฒœ ๊ฐœ ๋ž™์„ AI Factory๋กœ Scale-out


  1. ํด๋กœ์ง•

12.1 NVIDIA์˜ ํ˜„์žฌ

โ€œWe mentioned that we build chips, but as you know, NVIDIA builds entire systems now.โ€

์  ์Šจ ํ™ฉ์€ ํด๋กœ์ง•์—์„œ NVIDIA์˜ ์ •์ฒด์„ฑ์„ ๋‹ค์‹œ ์ •์˜ํ–ˆ์Šต๋‹ˆ๋‹ค. NVIDIA๋Š” ๋” ์ด์ƒ ์นฉ ํšŒ์‚ฌ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค. Full Stack์„ ๊ตฌ์ถ•ํ•˜๋Š” ํšŒ์‚ฌ์ž…๋‹ˆ๋‹ค.

์ด Full Stack์€ Chips(Vera, Rubin, NVLink, ConnectX, Bluefield, Spectrum-X)์—์„œ ์‹œ์ž‘ํ•ด Infrastructure(NVL72, Pod, ๋ƒ‰๊ฐ ์‹œ์Šคํ…œ)๋กœ ์ด์–ด์ง€๊ณ , Models(Cosmos, Nemotron, Llama ์ตœ์ ํ™”)๊ณผ Applications(์ž์œจ์ฃผํ–‰, ๋กœ๋ณดํ‹ฑ์Šค, ๋””์ง€ํ„ธ ์ œ์กฐ)๊นŒ์ง€ ํ™•์žฅ๋ฉ๋‹ˆ๋‹ค.

12.2 ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€

โ€œAI is a full stack. Weโ€™re reinventing AI across everything from chips to infrastructure to models to applications. And our job is to create the entire stack so that all of you could create incredible applications for the rest of the world.โ€

AI๋Š” ๋‹จ์ผ ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ ์ „์ฒด ์Šคํƒ์ž…๋‹ˆ๋‹ค. NVIDIA๋Š” ์นฉ๋ถ€ํ„ฐ ์ธํ”„๋ผ, ๋ชจ๋ธ, ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊นŒ์ง€ AI์˜ ๋ชจ๋“  ์ธต์œ„๋ฅผ ์žฌ๋ฐœ๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  NVIDIA์˜ ์—ญํ• ์€ ์ด ์ „์ฒด ์Šคํƒ์„ ๋งŒ๋“ค์–ด์„œ, ์ „ ์„ธ๊ณ„์˜ ๊ฐœ๋ฐœ์ž๋“ค์ด ๋†€๋ผ์šด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ฝ์–ด์ฃผ์…”์„œ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค!



-->