[Paper Review] EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes

Posted by Euisuk's Dev Log on August 29, 2025

[Paper Review] EXAONE 4.0: Unified Large Language Models Integrating

Non-reasoning and Reasoning Modes

์›๋ณธ ๊ฒŒ์‹œ๊ธ€: https://velog.io/@euisuk-chung/Paper-Review-EXAONE-4.0-Unified-Large-Language-Models-IntegratingNon-reasoning-and-Reasoning-Modes

https://arxiv.org/pdf/2507.11407

1
RESEARCH, L. G., et al. EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes. arXiv preprint arXiv:2507.11407, 2025.

ํ•ต์‹ฌ ๊ธฐ์—ฌ๋„ ๋ถ„์„

ํ•ด๊ฒฐํ•˜๋ ค๋Š” ๋ฌธ์ œ

๊ธฐ์กด EXAONE 3.5๋Š” ์‹ค์šฉ์  ํ™œ์šฉ์„ฑ์— ์ค‘์ ์„ ๋‘์—ˆ๊ณ , EXAONE Deep์€ ์ˆ˜ํ•™ยท์ฝ”๋”ฉ ์˜์—ญ์˜ ์ถ”๋ก  ์„ฑ๋Šฅ์— ์ง‘์ค‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
ํ•˜์ง€๋งŒ ๊ฐ๊ฐ ๋ณ„๋„์˜ ๋ชจ๋ธ๋กœ ์ œ๊ณต๋˜์–ด ์‚ฌ์šฉ์ž๊ฐ€ ๋‘ ๊ฐ€์ง€ ๋Šฅ๋ ฅ์„ ๋ชจ๋‘ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ๋ถˆํŽธํ•จ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

์ œ์•ˆํ•˜๋Š” ํ•ด๊ฒฐ์ฑ…์˜ ๋…์ฐฝ์„ฑ

EXAONE 4.0์€ NON-REASONING ๋ชจ๋“œ์™€ REASONING ๋ชจ๋“œ๋ฅผ ๋‹จ์ผ ๋ชจ๋ธ์— ํ†ตํ•ฉํ•œ hybrid ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ํ˜์‹ ์‚ฌํ•ญ์€:

  • Hybrid Attention ๋ฉ”์ปค๋‹ˆ์ฆ˜: ์ „์—ญ attention๊ณผ ์ง€์—ญ attention์„ 3:1 ๋น„์œจ๋กœ ๊ฒฐํ•ฉ
  • QK-Reorder-LN: Query์™€ Key ์ž…๋ ฅ ํ›„ LayerNorm์„ ์ ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ •๊ทœํ™” ๋ฐฉ๋ฒ•
  • ํ†ตํ•ฉ ๋ชจ๋“œ ํ›ˆ๋ จ: ๋‘ ๋ชจ๋“œ๋ฅผ ์ˆœ์ฐจ์ ์ด ์•„๋‹Œ ๋™์‹œ์— ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก 
  • AGAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜: ๊ธฐ์กด GRPO๋ฅผ ๊ฐœ์„ ํ•œ ๊ฐ•ํ™”ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜

๐Ÿ“– Chapter 1: Introduction

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

์„œ๋ก  ์ฑ•ํ„ฐ๋Š” EXAONE 4.0์˜ ๊ฐœ๋ฐœ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์ , ์ฃผ์š” ํŠน์ง•์„ ํฌ๊ด„์ ์œผ๋กœ ์ œ์‹œํ•˜์—ฌ ์ „์ฒด ๋…ผ๋ฌธ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.

์ €์ž์˜ ์„œ์ˆ  ์ˆœ์„œ๋ฅผ ๋”ฐ๋ฅธ ์ƒ์„ธ ๋‚ด์šฉ:

1. EXAONE ์‹œ๋ฆฌ์ฆˆ์˜ ๋ฐœ์ „ ๊ณผ์ •
LG AI Research์˜ EXAONE foundation model ์‹œ๋ฆฌ์ฆˆ๋Š” ๊ฐ•๋ ฅํ•œ instruction-following๊ณผ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์‹ค์ œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ง€์›ํ•˜๋„๋ก ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด์ „ ๋ฒ„์ „์ธ EXAONE 3.5๋Š” ํฌ๊ด„์ ์ธ instruction-following ๋Šฅ๋ ฅ์„ ๊ฐ•ํ™”ํ•˜์—ฌ ์‹ค์ œ ํ™œ์šฉ์„ฑ์— ์ง‘์ค‘ํ–ˆ์œผ๋ฉฐ, EXAONE Deep์€ ์ˆ˜ํ•™ ๋ฐ ์ฝ”๋”ฉ ์˜์—ญ์—์„œ์˜ ์ถ”๋ก  ์„ฑ๋Šฅ์„ ๊ฐ•์กฐํ–ˆ์Šต๋‹ˆ๋‹ค.

2. Agentic AI ์‹œ๋Œ€๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ
๋‹ค๊ฐ€์˜ค๋Š” agentic AI ์‹œ๋Œ€๋ฅผ ์—ผ๋‘์— ๋‘๊ณ , EXAONE 4.0์€ ์ด ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ํ•ต์‹ฌ ๋Šฅ๋ ฅ์ธ agentic tool use๋ฅผ ๋„์ž…ํ•˜๊ณ  ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๋”์šฑ ๋ฐœ์ „์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.

3. ๋ชจ๋“œ ํ†ตํ•ฉ์˜ ํ˜์‹ 
EXAONE 4.0์€ ๋น ๋ฅธ ์‚ฌ๊ณ ์™€ ์‘๋‹ต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” NON-REASONING ๋ชจ๋“œ์™€ ๊นŠ์€ ์‚ฌ๊ณ ์™€ ๋” ์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ์œ„ํ•œ REASONING ๋ชจ๋“œ๋ฅผ ๋‹จ์ผ ๋ชจ๋ธ์— ํ†ตํ•ฉํ–ˆ์Šต๋‹ˆ๋‹ค.

4. ๋ฐ์ดํ„ฐ์™€ ์ปจํ…์ŠคํŠธ ํ™•์žฅ
์‚ฌ์ „ ํ›ˆ๋ จ์— ์‚ฌ์šฉ๋˜๋Š” ํ† ํฐ ์ˆ˜๋ฅผ ๋Œ€ํญ ์ฆ๊ฐ€์‹œ์ผœ ์„ธ๊ณ„ ์ง€์‹์„ ๊ฐ•ํ™”ํ–ˆ์œผ๋ฉฐ, STEM ๋ถ„์•ผ์˜ ์ „๋ฌธ ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜์ด downstream ์ž‘์—…์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ์ตœ๋Œ€ ์ปจํ…์ŠคํŠธ ๊ธธ์ด๋ฅผ 128K ํ† ํฐ๊นŒ์ง€ ํ™•์žฅํ•˜์—ฌ ๊ธด ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ž‘์—…์˜ ์œ ์šฉ์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.

5. Hybrid Attention ์•„ํ‚คํ…์ฒ˜
๊ธด ์ปจํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ์‹œ attention ๊ณ„์‚ฐ์˜ ๊ณ„์‚ฐ ๋ถ€๋‹ด์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ „์—ญ attention๊ณผ ์ง€์—ญ attention์„ ๊ฒฐํ•ฉํ•œ hybrid ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ฑ„ํƒํ–ˆ์Šต๋‹ˆ๋‹ค.

6. ๋‹ค๊ตญ์–ด ์ง€์› ํ™•์žฅ
EXAONE 4.0์€ ๊ธฐ์กด์˜ ์˜์–ด์™€ ํ•œ๊ตญ์–ด ์ง€์›์— ๋”ํ•ด ์ŠคํŽ˜์ธ์–ด๋ฅผ ๊ณต์‹์ ์œผ๋กœ ์ถ”๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: EXAONE 4.0์˜ ์ „์ฒด์ ์ธ ๋น„์ „๊ณผ ์ฃผ์š” ํ˜์‹ ์‚ฌํ•ญ ์ œ์‹œ
๋‹ค์Œ ์ฑ•ํ„ฐ๋กœ์˜ ์—ฐ๊ฒฐ: ๊ตฌ์ฒด์ ์ธ ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ์ด์–ด์ง


๐Ÿ“– Chapter 2: Modeling

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

๋ชจ๋ธ๋ง ์ฑ•ํ„ฐ๋Š” EXAONE 4.0์˜ ๊ธฐ์ˆ ์  ๊ตฌํ˜„ ์„ธ๋ถ€์‚ฌํ•ญ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ํ•ต์‹ฌ ์žฅ์œผ๋กœ, ๋ชจ๋ธ ๊ตฌ์„ฑ๋ถ€ํ„ฐ ํ›„์ฒ˜๋ฆฌ ํ›ˆ๋ จ๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

2.1 Model Configurations

Hybrid Attention ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ๋„์ž…
EXAONE 4.0์€ ์ด์ „ EXAONE 3.5 ๋ชจ๋ธ๊ณผ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ์  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์œ ์ง€ํ•˜์ง€๋งŒ, attention ๋ฉ”์ปค๋‹ˆ์ฆ˜์—์„œ ์ฃผ์š”ํ•œ ๋ณ€ํ™”๋ฅผ ๋ณด์ž…๋‹ˆ๋‹ค. EXAONE 3.5์—์„œ๋Š” ๋ชจ๋“  ๋ ˆ์ด์–ด๊ฐ€ ์ „์—ญ attention์„ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ, EXAONE 4.0์€ ์ง€์—ญ attention(sliding window attention)๊ณผ ์ „์—ญ attention์„ 3:1 ๋น„์œจ๋กœ ๊ฒฐํ•ฉํ•œ hybrid attention ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

์„ค๊ณ„ ์›๋ฆฌ์™€ ์ด๋ก ์  ๋ฐฐ๊ฒฝ
์ตœ๊ทผ ์—ฐ๊ตฌ๋“ค์€ ๋” ํฐ window ํฌ๊ธฐ(์˜ˆ: 512์—์„œ 1,024 ๋˜๋Š” 4,096)๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์†Œ์ˆ˜์˜ ๋ ˆ์ด์–ด์—๋งŒ ์ „์—ญ attention์„ ์ ์šฉํ•ด๋„ ์šฐ์ˆ˜ํ•œ long-context ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. EXAONE 4.0 ์„ค๊ณ„์—์„œ๋Š” ๋‹จ๋ฌธ๋งฅ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ๋ถ€์ •์  ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด 4K์˜ sliding window ํฌ๊ธฐ๋ฅผ ์„ ํƒํ–ˆ์Šต๋‹ˆ๋‹ค.

RoPE์™€ Attention ์„ค๊ณ„
์ „์—ญ attention์—์„œ๋Š” Rotary Position embedding์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•„ ๋ชจ๋ธ์ด ๊ธธ์ด์— ๋Œ€ํ•œ ํŽธํ–ฅ์„ ๊ฐ–์ง€ ์•Š๊ณ  global view๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ง€์—ญ attention ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์„ค๊ณ„์—์„œ๋Š” chunked attention ์ „๋žต ๋Œ€์‹  ์ด๋ก ์  ์•ˆ์ •์„ฑ์ด ๊ฐ•ํ•œ sliding window attention์„ ์ฑ„ํƒํ–ˆ์Šต๋‹ˆ๋‹ค.

QK-Reorder-LN ์ •๊ทœํ™” ๋ฐฉ๋ฒ•

๊ธฐ์กด ๋ฌธ์ œ์ ๊ณผ ํ•ด๊ฒฐ์ฑ…
์ตœ๊ทผ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ๋ชจ๋ธ ์„ฑ๋Šฅ์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š” ์ผ๋ถ€ ๋ ˆ์ด์–ด๋“ค์ด ์ฃผ๋กœ ๊นŠ์€ ๋ ˆ์ด์–ด์—์„œ ๋ฐœ๊ฒฌ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค์ง€๋งŒ ๋ชจ๋ธ ๊นŠ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ถœ๋ ฅ์˜ ๋ถ„์‚ฐ์ด ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” Pre-LN transformer ์•„ํ‚คํ…์ฒ˜์— ๊ธฐ์ธํ•ฉ๋‹ˆ๋‹ค.

QK-Reorder-LN์˜ ๊ตฌํ˜„
์ž…๋ ฅ query์™€ key ํ›„์— LayerNorm์„ ์ ์šฉํ•˜๊ณ , attention ์ถœ๋ ฅ ํ›„์— ๋‹ค์‹œ LayerNorm์„ ์ˆ˜ํ–‰ํ•˜๋Š” QK-Reorder-LN ๋ฐฉ๋ฒ•์ด ๋” ๋งŽ์€ ๊ณ„์‚ฐ์„ ์†Œ๋ชจํ•˜์ง€๋งŒ downstream ์ž‘์—…์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

๋ชจ๋ธ ๊ตฌ์„ฑ ์„ธ๋ถ€์‚ฌํ•ญ

EXAONE 4.0 ๋ชจ๋ธ ์‹œ๋ฆฌ์ฆˆ๋Š” 32B์™€ 1.2B ๋‘ ๊ฐ€์ง€ ๊ตฌ์„ฑ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค:

32B ๋ชจ๋ธ ์‚ฌ์–‘:

  • d_model: 5,120
  • ๋ ˆ์ด์–ด ์ˆ˜: 64
  • Attention ํƒ€์ž…: Hybrid
  • Head ํƒ€์ž…: GQA (Grouped Query Attention)
  • ์ตœ๋Œ€ ์‹œํ€€์Šค ๊ธธ์ด: 131,072

1.2B ๋ชจ๋ธ ์‚ฌ์–‘:

  • d_model: 2,048
  • ๋ ˆ์ด์–ด ์ˆ˜: 30
  • Attention ํƒ€์ž…: Global
  • Head ํƒ€์ž…: GQA
  • ์ตœ๋Œ€ ์‹œํ€€์Šค ๊ธธ์ด: 65,536

2.2 Pre-training

๋ฐ์ดํ„ฐ ๊ทœ๋ชจ์˜ ๋Œ€ํญ ํ™•์žฅ
EXAONE 3.5 32B ๋ชจ๋ธ์ด 6.5์กฐ ํ† ํฐ์œผ๋กœ ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๊ฒƒ์— ๋น„ํ•ด, EXAONE 4.0 32B ๋ชจ๋ธ์€ ์ด๋ฅผ ๋‘ ๋ฐฐ๋กœ ๋Š˜๋ฆฐ 14์กฐ ํ† ํฐ์œผ๋กœ ์‚ฌ์ „ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ€๋Š” ๋ชจ๋ธ์˜ ์„ธ๊ณ„ ์ง€์‹ ํ–ฅ์ƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

์ธ์ง€ ํ–‰๋™ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜
์ตœ๊ทผ ์—ฐ๊ตฌ์—์„œ ์ถ”๋ก  ์„ฑ๋Šฅ์ด ์‚ฌ์ „ ํ›ˆ๋ จ ์ค‘ ๋ฌธ์„œ์—์„œ ์Šต๋“ํ•œ ์ธ์ง€ ํ–‰๋™์— ์˜ํ•ด ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์ง์— ๋”ฐ๋ผ, ํ›„์ฒ˜๋ฆฌ ํ›ˆ๋ จ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์‚ฌ์ „ ํ›ˆ๋ จ ์ค‘ ์—„๊ฒฉํ•œ ๋ฐ์ดํ„ฐ ํ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.

2.3 Context Length Extension

2๋‹จ๊ณ„ ํ™•์žฅ ํ”„๋กœ์„ธ์Šค
EXAONE 4.0์—์„œ๋Š” ์ตœ๋Œ€ ์ปจํ…์ŠคํŠธ ๊ธธ์ด๋ฅผ 128K ํ† ํฐ๊นŒ์ง€ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด 2๋‹จ๊ณ„ ์ปจํ…์ŠคํŠธ ๊ธธ์ด ํ™•์žฅ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค:

  1. 4K ํ† ํฐ์œผ๋กœ ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ 32K ํ† ํฐ์œผ๋กœ ํ™•์žฅ
  2. ์ดํ›„ 128K ํ† ํฐ๊นŒ์ง€ ์ถ”๊ฐ€ ํ™•์žฅ

NIAH ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•œ ๊ฒ€์ฆ
๊ฐ ๋‹จ๊ณ„์—์„œ Needle In A Haystack (NIAH) ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ฒ ์ €ํžˆ ๊ฒ€์ฆํ•˜๋ฉฐ, ๋ชจ๋“  ์„ธ๊ทธ๋จผํŠธ์—์„œ ์ผ๊ด€๋˜๊ฒŒ โ€œ๋…น์ƒ‰ ์‹ ํ˜ธโ€๊ฐ€ ๊ด€์ฐฐ๋  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค.

2.4 Post-training

3๋‹จ๊ณ„ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ
EXAONE 4.0์˜ ํ›„์ฒ˜๋ฆฌ ํ›ˆ๋ จ์€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ์ž ์ง€์‹œ์— ์‘๋‹ตํ•˜๊ณ  NON-REASONING๊ณผ REASONING ๋ชจ๋ธ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค:

  1. Supervised Fine-tuning (SFT)
  2. Reasoning Reinforcement Learning (RL)
  3. Preference Learning (NON-REASONING๊ณผ REASONING ๋ชจ๋“œ ํ†ตํ•ฉ)

2.4.1 Large-scale Supervised Fine-tuning

5๊ฐœ ๋„๋ฉ”์ธ๋ณ„ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ
SFT ๋ฐ์ดํ„ฐ์…‹์€ non-reasoning๊ณผ reasoning ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด์ง€๋ฉฐ, 5๊ฐœ ์˜์—ญ์œผ๋กœ ๋ถ„๋ฅ˜๋ฉ๋‹ˆ๋‹ค:

World Knowledge ๋„๋ฉ”์ธ
๊ด‘๋ฒ”์œ„ํ•œ ๋ถ„์•ผ์™€ ๋‚œ์ด๋„ ์ˆ˜์ค€์„ ํฌ๊ด„ํ•˜๋Š” ์„ธ๊ณ„ ์ง€์‹ ๋„๋ฉ”์ธ์—์„œ๋Š” ๊ต์œก์  ๊ฐ€์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์›น ์†Œ์Šค์—์„œ ์ˆ˜์ง‘ํ•œ ๋ฌธ์ œ๋ฅผ ํ•„ํ„ฐ๋งํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ๋ฅผ ์šฐ์„  ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.

Math, Code, Logic ๋„๋ฉ”์ธ
์ด ์˜์—ญ์—์„œ๋Š” ์ •ํ™•ํ•œ ground truth ์„ค์ •์ด ํ•„์ˆ˜์ ์ด์ง€๋งŒ ์–ด๋ ค์›Œ ๊ณ ํ’ˆ์งˆ ๋ฌธ์ œ ์ˆ˜๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ์ œํ•œ์ ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋‹ต๋ณ€์„ ๊ฐ€์ง„ ์ฟผ๋ฆฌ์— ๋Œ€ํ•ด ๋‹ค์–‘ํ•œ ์‘๋‹ต์„ ํ›ˆ๋ จํ•˜๋ฉฐ, ๊ณ ์œ ํ•œ ์ฟผ๋ฆฌ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ๋งŒํผ ์ฟผ๋ฆฌ๋‹น ์—ฌ๋Ÿฌ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ ์ž„์„ ๊ด€์ฐฐํ–ˆ์Šต๋‹ˆ๋‹ค.

Long Context ๋„๋ฉ”์ธ
์›น ์ฝ”ํผ์Šค์—์„œ ํ™•์žฅ๋œ ์ž…๋ ฅ์˜ ํฌ๊ด„์  ์ดํ•ด๊ฐ€ ํ•„์š”ํ•œ ์ž‘์—…์— ์ค‘์ ์„ ๋‘” long-context SFT ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋ถ„์‚ฐ๋œ ์ •๋ณด๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ปจํ…์ŠคํŠธ ๊ธธ์ด์™€ ํ•ต์‹ฌ ์ฝ˜ํ…์ธ ์˜ ์œ„์น˜๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ต๋‹ˆ๋‹ค.

Agentic Tool Use ๋„๋ฉ”์ธ
๋ชจ๋ธ์˜ agentic tool use ๋Šฅ๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋‹จ์ˆœํ•œ single tool call ๋ฐ์ดํ„ฐ์…‹ ์ƒ์„ฑ์„ ๋„˜์–ด ๋ณต์žกํ•œ long-horizon tool-calling ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž-์—์ด์ „ํŠธ ๋Œ€ํ™”์— ์‚ฌ์šฉ์ž ์ƒํ˜ธ์ž‘์šฉ, ํ™˜๊ฒฝ์œผ๋กœ๋ถ€ํ„ฐ์˜ ์‹คํ–‰ ํ”ผ๋“œ๋ฐฑ, ๋ฐ˜๋ณต์  ์ถ”๋ก ์„ ํฌํ•จ์‹œ์ผœ ์—์ด์ „ํŠธ๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์›ํ•˜๋Š” ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๋„๋ก ์•ˆ๋‚ดํ•ฉ๋‹ˆ๋‹ค.

Multilinguality ๋„๋ฉ”์ธ
ํ•œ๊ตญ์–ด์™€ ์ŠคํŽ˜์ธ์–ด ์ง€์›์„ ์œ„ํ•ด ๊ฐ ์–ธ์–ด๋ณ„ ๋ฌธํ™”์ , ์—ญ์‚ฌ์  ์ง€์‹์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋Š” ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์„ฑํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‚ฌ์šฉ์ž์™€์˜ ์œ ์ฐฝํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

ํ†ตํ•ฉ ๋ชจ๋“œ ํ›ˆ๋ จ
๊ฒฐํ•ฉ๋œ ๋ฐ์ดํ„ฐ์…‹์—์„œ NON-REASONING ๋ฐ์ดํ„ฐ๋Š” ์ฃผ๋กœ ๋‹ค์–‘ํ•œ ์ž‘์—…์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ณ , REASONING ๋ฐ์ดํ„ฐ๋Š” ์ˆ˜ํ•™๊ณผ ์ฝ”๋“œ ๋„๋ฉ”์ธ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ๋‘ ๋ชจ๋“œ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ fine-tuningํ•˜๋Š” ๋Œ€์‹  ๊ฒฐํ•ฉํ•˜์—ฌ ํ•จ๊ป˜ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค. ํ† ํฐ ๋น„์œจ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด REASONING ๋Œ€ NON-REASONING ๋ฐ์ดํ„ฐ ๋น„์œจ์„ 1.5:1๋กœ ์„ค์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.

2.4.2 Reasoning Reinforcement Learning

AGAPO ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ
๋ชจ๋ธ์˜ ์ถ”๋ก  ๋Šฅ๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด SFT ํ›„ ์˜จ๋ผ์ธ ๊ฐ•ํ™”ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด GRPO ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•œ๊ณ„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด AGAPO (Asymmetric Sampling and Global Advantage Policy Optimization)๋ผ๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.

AGAPO์˜ ์ฃผ์š” ํŠน์ง•:

1. Remove Clipped Objective
PPO์˜ clip loss๊ฐ€ ์ถ”๋ก  ๊ฒฝ๋กœ์˜ ๋ถ„๊ธฐ์  ์—ญํ• ์„ ํ•˜๋Š” ๋ฐ˜์„ฑ์  ํ–‰๋™๊ณผ ๊ด€๋ จ๋œ ์ค‘์š”ํ•œ ์ €ํ™•๋ฅ  ํ† ํฐ์˜ ๊ธฐ์—ฌ๋„๋ฅผ ๋–จ์–ด๋œจ๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ์ด์ „ ์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, AGAPO๋Š” PPO์—์„œ clipping์„ ์ œ๊ฑฐํ•˜๊ณ  ํ‘œ์ค€ policy gradient loss๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

2. Asymmetric Sampling
๋ชจ๋“  ์‘๋‹ต์ด ํ‹€๋ฆฐ ์ƒ˜ํ”Œ๋„ ๋ฒ„๋ฆฌ์ง€ ์•Š๊ณ  ๋” ๋†’์€ ๋น„์œจ์˜ ๋ถ€์ •์  ํ”ผ๋“œ๋ฐฑ์„ ํฌํ•จ์‹œํ‚ค๋Š” ๋น„๋Œ€์นญ ์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.

3. Group & Global Advantages
GRPO์˜ advantage ๋ฐฉ๋ฒ•์ด ์ „์ฒด ๋ฐฐ์น˜์˜ ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด, AGAPO๋Š” ๊ทธ๋ฃน ๋‹จ๊ณ„์™€ ์ „์—ญ ๋‹จ๊ณ„์˜ 2๋‹จ๊ณ„๋กœ advantage๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

4. Sequence Level Cumulative KL
SFT ๋‹จ๊ณ„์—์„œ ํ•™์Šตํ•œ ๋Šฅ๋ ฅ์„ ๋ณด์กดํ•˜๋ฉด์„œ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด sequence-level cumulative KL penalty๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

๋ชฉ์  ํ•จ์ˆ˜
AGAPO ๋ชฉ์  ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋ฉ๋‹ˆ๋‹ค:

JAGAPO(ฮธ)=EqโˆผP(Q),{oi}i=1Gโˆผฯ€ฮธ(Oโˆฃq)[1Gโˆ‘i=1G(Aglobal,ilogโกฯ€ฮธ(oiโˆฃq)โˆ’ฮฒDKL[ฯ€ฮธ,ฯ€ref])]J_{AGAPO}(\theta) = \mathbb{E}_{q \sim P(Q), {o_i}_{i=1}^G \sim \pi_\theta(O q)} \left[ \frac{1}{G} \sum_{i=1}^G \left( A_{global,i} \log \pi_\theta(o_i q) - \beta D_{KL}[\pi_\theta, \pi_{ref}] \right) \right]JAGAPOโ€‹(ฮธ)=EqโˆผP(Q),{oiโ€‹}i=1Gโ€‹โˆผฯ€ฮธโ€‹(Oโˆฃq)โ€‹[G1โ€‹โˆ‘i=1Gโ€‹(Aglobal,iโ€‹logฯ€ฮธโ€‹(oiโ€‹โˆฃq)โˆ’ฮฒDKLโ€‹[ฯ€ฮธโ€‹,ฯ€refโ€‹])]

2.4.3 Preference Learning with Hybrid Reward

2๋‹จ๊ณ„ Preference Learning
RL ๋‹จ๊ณ„์—์„œ๋Š” ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋ณด์ƒ์„ ํ†ตํ•ด ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์ง€๋งŒ, ๋‹ค๋ฅธ ์œ ํ˜•์˜ ์ž‘์—…์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๊ด€์ฐฐ๋ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ถ”๊ฐ€์ ์ธ preference learning ๋‹จ๊ณ„๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค.

1๋‹จ๊ณ„: ์ •ํ™•์„ฑ๊ณผ ๊ฐ„๊ฒฐ์„ฑ
์ถ”๋ก  ๊ด€๋ จ ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋ณด์ƒ๊ณผ ๊ฐ„๊ฒฐ์„ฑ ๋ณด์ƒ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ •๋‹ต ์ค‘ ๊ฐ€์žฅ ์งง์€ ์‘๋‹ต์„ ์„ ํƒ๋œ ์˜ต์…˜์œผ๋กœ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.

2๋‹จ๊ณ„: ์–ธ์–ด ์ผ๊ด€์„ฑ๊ณผ ์„ ํ˜ธ๋„
์ธ๊ฐ„ ์ •๋ ฌ์„ ์œ„ํ•ด ์„ ํ˜ธ๋„ ๋ณด์ƒ๊ณผ ์–ธ์–ด ์ผ๊ด€์„ฑ ๋ณด์ƒ์˜ ์กฐํ•ฉ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. REASONING ๋ชจ๋“œ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ ์ถ”๋ก  ๊ณผ์ •์ด ์™„๋ฃŒ๋œ ํ›„ ์ตœ์ข… ๋‹ต๋ณ€์—์„œ๋งŒ ์„ ํ˜ธ๋„ ๋ผ๋ฒจ๋ง์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜์™€ ํ›ˆ๋ จ ๋ฐฉ๋ฒ•๋ก ์˜ ์ƒ์„ธํ•œ ๊ธฐ์ˆ ์  ๊ตฌํ˜„
๋‹ค์Œ ์ฑ•ํ„ฐ๋กœ์˜ ์—ฐ๊ฒฐ: ์ด๋ก ์  ์„ค๊ณ„๊ฐ€ ์‹ค์ œ ์„ฑ๋Šฅ์œผ๋กœ ์–ด๋–ป๊ฒŒ ๊ตฌํ˜„๋˜๋Š”์ง€ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋กœ ์ด์–ด์ง


๐Ÿ“– Chapter 3: Evaluation

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

ํ‰๊ฐ€ ์ฑ•ํ„ฐ๋Š” EXAONE 4.0์˜ ์ด๋ก ์  ์„ค๊ณ„์™€ ๊ตฌํ˜„์ด ์‹ค์ œ ์„ฑ๋Šฅ์œผ๋กœ ์–ด๋–ป๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ์ฒด๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ํ•ต์‹ฌ ์žฅ์ž…๋‹ˆ๋‹ค.

3.1 Benchmarks

6๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ํ‰๊ฐ€ ์ฒด๊ณ„
EXAONE 4.0์„ 6๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค์–‘ํ•œ ๋ฒค์น˜๋งˆํฌ๋กœ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค:

World Knowledge

  • MMLU-REDUX: MMLU์˜ ๊ฐœ์„  ๋ฐ ํ™•์žฅ ๋ฒ„์ „
  • MMLU-PRO: ๋”์šฑ ๊ฒฌ๊ณ ํ•˜๊ณ  ๋„์ „์ ์ธ ๋‹ค์ค‘ ์ž‘์—… ์–ธ์–ด ์ดํ•ด ๋ฒค์น˜๋งˆํฌ
  • GPQA-DIAMOND: ์ƒ๋ฌผํ•™, ๋ฌผ๋ฆฌํ•™, ํ™”ํ•™ ๋ถ„์•ผ์˜ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€ ์ง€์‹ ํ‰๊ฐ€

Math/Coding

  • AIME 2025: ์ˆ˜ํ•™ ์˜ฌ๋ฆผํ”ผ์•„๋“œ ๊ฒฝ์‹œ ๋Œ€ํšŒ
  • HMMT FEB 2025: ํ•˜๋ฒ„๋“œ-MIT ์ˆ˜ํ•™ ํ† ๋„ˆ๋จผํŠธ
  • LIVECODEBENCH V5/V6: ๋ผ์ด๋ธŒ ์ฝ”๋”ฉ ๋Šฅ๋ ฅ ํ‰๊ฐ€

Instruction Following

  • IFEVAL: ์ง€์‹œ ์ค€์ˆ˜ ๋Šฅ๋ ฅ ํ‰๊ฐ€
  • MULTI-IF: ๋‹ค์ค‘ ํ„ด ๋ฐ ๋‹ค๊ตญ์–ด ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ํ™•์žฅ๋œ IFEVAL

Long Context

  • HELMET: ํ•ฉ์„ฑ ์ž‘์—…๊ณผ ์‹ค์ œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํฌ๊ด„ํ•˜๋Š” long-context ์ดํ•ด ๋Šฅ๋ ฅ
  • RULER: ๋‹ค์–‘ํ•œ ์ธก๋ฉด์˜ long-context ์ดํ•ด ํ‰๊ฐ€
  • LONGBENCH: ์ด์ค‘ ์–ธ์–ด long-context ์ดํ•ด ๋ฒค์น˜๋งˆํฌ

Agentic Tool Use

  • BFCL-V3: ํ•จ์ˆ˜ ํ˜ธ์ถœ ๋Šฅ๋ ฅ์˜ ๋‹ค์–‘ํ•œ ์ธก๋ฉด ํ‰๊ฐ€
  • TAU-BENCH: ์‹œ๋ฎฌ๋ ˆ์ด์…˜๋œ ์‚ฌ์šฉ์ž LLM๊ณผ์˜ ๋Œ€ํ™”๋ฅผ ํ†ตํ•œ ๋„๊ตฌ ํ˜ธ์ถœ ์„ฑ๋Šฅ ํ‰๊ฐ€

Multilinguality

  • ํ•œ๊ตญ์–ด: KMMLU-PRO, KMMLU-REDUX, KSM (Korean School Math)
  • ์ŠคํŽ˜์ธ์–ด: MMMLU (ES), MATH500 (ES), WMT24++

3.2 Baselines

3๊ฐ€์ง€ ๋ชจ๋ธ ํƒ€์ž…๋ณ„ ๋ถ„๋ฅ˜
๋น„๊ต ๋Œ€์ƒ ๋ชจ๋ธ๋“ค์„ 3๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜:

  1. Non-Reasoning ๋ชจ๋ธ: CoT ์Šคํƒ€์ผ๋กœ ์‘๋‹ต ์ƒ์„ฑ
  2. Reasoning ๋ชจ๋ธ: ๊ธด CoT ์Šคํƒ€์ผ๋กœ ์‘๋‹ต ์ƒ์„ฑ
  3. Hybrid ๋ชจ๋ธ: ๋ชจ๋“œ์— ๋”ฐ๋ผ CoT ๋˜๋Š” ๊ธด CoT ์Šคํƒ€์ผ๋กœ ์ƒ์„ฑ

๋ชจ๋ธ ๊ทœ๋ชจ๋ณ„ ๋ถ„๋ฅ˜

  • Small-size: 3B ๋ฏธ๋งŒ
  • Mid-size: 10B-30B
  • Frontier: 200B ์ด์ƒ

3.4 Experimental Results

์ˆ˜ํ•™/์ฝ”๋”ฉ ๋„๋ฉ”์ธ์—์„œ์˜ ์šฐ์ˆ˜์„ฑ
EXAONE 4.0 ๋ชจ๋ธ์€ ์ˆ˜ํ•™/์ฝ”๋”ฉ ๋ฒค์น˜๋งˆํฌ์—์„œ ํƒ์›”ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค:

  • 32B ๋ชจ๋ธ: REASONING๊ณผ NON-REASONING ๋ชจ๋“œ ๋ชจ๋‘์—์„œ Qwen3 235B๋ฅผ ๋ชจ๋“  ์ˆ˜ํ•™/์ฝ”๋”ฉ ๋ฒค์น˜๋งˆํฌ์—์„œ ๋Šฅ๊ฐ€
  • 1.2B ๋ชจ๋ธ: REASONING ๋ชจ๋“œ์˜ EXAONE Deep 2.4B๋ฅผ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ธฐ์ค€์„ ์„ ๋Šฅ๊ฐ€

๋„๊ตฌ ์‚ฌ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ์˜ ๊ฒฝ์Ÿ๋ ฅ
EXAONE 4.0 32B ๋ชจ๋ธ์€ ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ๋„๊ตฌ ์‚ฌ์šฉ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค:

  • REASONING ๋ชจ๋“œ์—์„œ TAU-BENCH์—์„œ R1-0528๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ
  • NON-REASONING ๋ชจ๋“œ์—์„œ Qwen 3 235B์™€ ๋น„๊ต ๊ฐ€๋Šฅํ•œ BFCL-V3 ๊ฒฐ๊ณผ

์„ธ๊ณ„ ์ง€์‹๊ณผ GPQA ์„ฑ๋Šฅ
๋‘ ๋ชจ๋ธ ๋ชจ๋‘ ์„ธ๊ณ„ ์ง€์‹ ์นดํ…Œ๊ณ ๋ฆฌ ๋ฒค์น˜๋งˆํฌ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ํŠนํžˆ GPQA-DIAMOND์—์„œ ๊ธฐ์ค€์„ ๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

3.5 Reasoning Budget

์ถ”๋ก  ํ† ํฐ ์ˆ˜์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ๋ณ€ํ™”
์ถ”๋ก  ํ† ํฐ ์ˆ˜๋ฅผ 1K์—์„œ 64K๊นŒ์ง€ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์„ฑ๋Šฅ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ–ˆ์Šต๋‹ˆ๋‹ค:

32K ์ถ”๋ก  ์˜ˆ์‚ฐ์—์„œ์˜ ๊ฒฝ์Ÿ๋ ฅ
EXAONE 4.0 ๋ชจ๋ธ์€ 32K ์ถ”๋ก  ์˜ˆ์‚ฐ์œผ๋กœ๋„ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค:

  • 32B ๋ชจ๋ธ์˜ AIME 2025์—์„œ 12.3% ๊ฐ์†Œ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š” ๋Œ€๋ถ€๋ถ„ 5% ์ด๋‚ด์˜ ์„ฑ๋Šฅ ๊ฐ์†Œ
  • ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์—ฌ์ „ํžˆ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ๊ฒฐ๊ณผ ์œ ์ง€

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: ์ข…ํ•ฉ์ ์ด๊ณ  ์ฒด๊ณ„์ ์ธ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ํ†ตํ•œ ๋ชจ๋ธ ๋Šฅ๋ ฅ ๊ฒ€์ฆ
๋‹ค์Œ ์ฑ•ํ„ฐ๋กœ์˜ ์—ฐ๊ฒฐ: ์„ฑ๋Šฅ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ชจ๋ธ์˜ ํ•œ๊ณ„์ ๊ณผ ์œ„ํ—˜์š”์†Œ ๋…ผ์˜๋กœ ์ด์–ด์ง


๐Ÿ“– Chapter 4: Limitations

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

ํ•œ๊ณ„์  ์ฑ•ํ„ฐ๋Š” EXAONE 4.0์˜ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์กด์žฌํ•˜๋Š” ์ œ์•ฝ์‚ฌํ•ญ๊ณผ ์ž ์žฌ์  ์œ„ํ—˜์š”์†Œ๋ฅผ ์†”์งํ•˜๊ฒŒ ๋…ผ์˜ํ•ฉ๋‹ˆ๋‹ค.

์ €์ž์˜ ์„œ์ˆ  ์ˆœ์„œ๋ฅผ ๋”ฐ๋ฅธ ์ƒ์„ธ ๋‚ด์šฉ:

1. ๊ธฐ๋ณธ์ ์ธ ์–ธ์–ด ๋ชจ๋ธ์˜ ํ•œ๊ณ„
EXAONE 4.0 ์–ธ์–ด ๋ชจ๋ธ์€ ๊ธฐ์กด์˜ ๋ชจ๋“  ์–ธ์–ด ๋ชจ๋ธ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ํŠน์ • ํ•œ๊ณ„๊ฐ€ ์žˆ์œผ๋ฉฐ ๋•Œ๋•Œ๋กœ ๋ถ€์ ์ ˆํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์–ธ์–ด ๋ชจ๋ธ์€ ํ† ํฐ์˜ ์ถœ๋ ฅ ํ™•๋ฅ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ์˜ ํ•™์Šต ์ค‘์— ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค.

2. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋ถˆ์™„์ „์„ฑ
๊ฐœ์ธ์ , ์œ ํ•ดํ•œ, ํŽธํ–ฅ๋œ ์ •๋ณด๋ฅผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ์ œ์™ธํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์˜€์ง€๋งŒ, ์ผ๋ถ€ ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š” ์ฝ˜ํ…์ธ ๊ฐ€ ์—ฌ์ „ํžˆ ํฌํ•จ๋  ์ˆ˜ ์žˆ์–ด ๋ฐ”๋žŒ์งํ•˜์ง€ ์•Š์€ ์‘๋‹ต์œผ๋กœ ์ด์–ด์งˆ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

3. ๊ตฌ์ฒด์ ์ธ ์œ„ํ—˜ ์š”์†Œ๋“ค

๋ถ€์ ์ ˆํ•œ ๋‹ต๋ณ€ ์ƒ์„ฑ
๊ฐœ์ธ์ , ์œ ํ•ดํ•œ ๋˜๋Š” ๊ธฐํƒ€ ๋ถ€์ ์ ˆํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋œ ๋ถ€์ ์ ˆํ•œ ๋‹ต๋ณ€์ด ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํŽธํ–ฅ๋œ ์‘๋‹ต
์—ฐ๋ น, ์„ฑ๋ณ„, ์ธ์ข… ๋“ฑ๊ณผ ๊ด€๋ จ๋œ ํŽธํ–ฅ๋œ ์‘๋‹ต์ด ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ†ต๊ณ„์  ์˜์กด์„ฑ์˜ ๋ฌธ์ œ
์ƒ์„ฑ๋œ ์‘๋‹ต์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํ†ต๊ณ„์— ํฌ๊ฒŒ ์˜์กดํ•˜์—ฌ ์˜๋ฏธ์ ์œผ๋กœ ๋˜๋Š” ๊ตฌ๋ฌธ์ ์œผ๋กœ ์˜ฌ๋ฐ”๋ฅด์ง€ ์•Š์€ ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ตœ์‹  ์ •๋ณด์˜ ๋ถ€์žฌ
๋ชจ๋ธ์ด ์ตœ์‹  ์ •๋ณด๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์‘๋‹ต์ด ๊ฑฐ์ง“์ด๊ฑฐ๋‚˜ ๋ชจ์ˆœ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

4. ์œค๋ฆฌ์  ์‚ฌ์šฉ ์ง€์นจ
LG AI Research๋Š” EXAONE 4.0 ์–ธ์–ด ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ์  ์œ„ํ—˜์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž๋Š” EXAONE 4.0 ์–ธ์–ด ๋ชจ๋ธ ์‚ฌ์šฉ ์‹œ LG AI์˜ ์œค๋ฆฌ ์›์น™์„ ์œ„๋ฐ˜ํ•˜๋Š” ๋ถ€์ ์ ˆํ•œ ์ถœ๋ ฅ ์ƒ์„ฑ์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋Š” ์•…์˜์  ํ™œ๋™(์˜ˆ: ๋ถˆ๋ฒ• ์ •๋ณด ์ž…๋ ฅ)์— ์ฐธ์—ฌํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

5. ์ฑ…์ž„ ๊ณ ์ง€
EXAONE 4.0 ์–ธ์–ด ๋ชจ๋ธ์— ์˜ํ•ด ์ƒ์„ฑ๋œ ํ…์ŠคํŠธ๋Š” LG AI Research์˜ ๊ฒฌํ•ด๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: ๋ชจ๋ธ์˜ ํˆฌ๋ช…์„ฑ๊ณผ ์ฑ…์ž„๊ฐ ์žˆ๋Š” AI ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ํ•œ๊ณ„ ์ธ์‹
๋‹ค์Œ ์ฑ•ํ„ฐ๋กœ์˜ ์—ฐ๊ฒฐ: ์‹ค์ œ ๋ฐฐํฌ๋ฅผ ์œ„ํ•œ ๋ผ์ด์„ ์Šค ์ •๋ณด ์ œ๊ณต์œผ๋กœ ์ด์–ด์ง


๐Ÿ“– Chapter 5: Deployment

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

๋ฐฐํฌ ์ฑ•ํ„ฐ๋Š” EXAONE 4.0 ๋ชจ๋ธ์˜ ์‹ค์ œ ์‚ฌ์šฉ์„ ์œ„ํ•œ ๋ฒ•์  ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์‹ค์šฉ์  ์žฅ์ž…๋‹ˆ๋‹ค.

๋ผ์ด์„ ์Šค ์ •๋ณด

๋ถ€๋ก B์—์„œ EXAONE 4.0 ๋ชจ๋ธ ์‚ฌ์šฉ์„ ์œ„ํ•œ ๋ผ์ด์„ ์Šค ์ •๋ณด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์–ธ์–ด ๋ชจ๋ธ์˜ ํ•ฉ๋ฒ•์  ํ™œ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ๋ผ์ด์„ ์Šค ์ •๋ณด ์ดํ•ด๊ฐ€ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค.

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: ๋ชจ๋ธ ์‚ฌ์šฉ์„ ์œ„ํ•œ ๋ฒ•์  ๊ฐ€์ด๋“œ๋ผ์ธ ์ œ๊ณต
๋‹ค์Œ ์ฑ•ํ„ฐ๋กœ์˜ ์—ฐ๊ฒฐ: ์ „์ฒด ์—ฐ๊ตฌ์˜ ๊ฒฐ๋ก ๊ณผ ํ–ฅํ›„ ๋ฐฉํ–ฅ ์ œ์‹œ๋กœ ๋งˆ๋ฌด๋ฆฌ


๐Ÿ“– Chapter 6: Conclusion

์ฑ•ํ„ฐ์˜ ์œ„์น˜์™€ ์—ญํ• 

๊ฒฐ๋ก  ์ฑ•ํ„ฐ๋Š” EXAONE 4.0์˜ ์ „์ฒด์ ์ธ ์„ฑ๊ณผ๋ฅผ ์š”์•ฝํ•˜๊ณ  ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๋Š” ๋งˆ๋ฌด๋ฆฌ ์žฅ์ž…๋‹ˆ๋‹ค.

์ €์ž์˜ ์„œ์ˆ  ์ˆœ์„œ๋ฅผ ๋”ฐ๋ฅธ ์ƒ์„ธ ๋‚ด์šฉ:

1. EXAONE 4.0์˜ ํ•ต์‹ฌ ์„ฑ๊ณผ
๋ณธ ๊ธฐ์ˆ  ๋ณด๊ณ ์„œ์—์„œ๋Š” NON-REASONING ๋ชจ๋“œ์™€ REASONING ๋ชจ๋“œ๋ฅผ ํ†ตํ•ฉํ•œ EXAONE 4.0์„ ์†Œ๊ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. EXAONE 4.0์˜ ์ฃผ์š” ํŠน์ง•์€ ์ด์ „์— EXAONE 3.5์™€ EXAONE Deep์—์„œ ๊ฐ๊ฐ ์ง€์›๋˜์—ˆ๋˜ ์‹ค์šฉ์  ํ™œ์šฉ์„ฑ๊ณผ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ด๋ฅผ ๋‹จ์ผ ๋ชจ๋ธ๋กœ ํ†ตํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

2. ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์˜ ๋„์ž…
agentic tool use ๋ฐ ์ŠคํŽ˜์ธ์–ด ์ง€์›๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์„ ๋„์ž…ํ–ˆ์Šต๋‹ˆ๋‹ค.

3. ์„ฑ๋Šฅ์ƒ์˜ ์šฐ์ˆ˜์„ฑ
์„ฑ๋Šฅ ๋ฉด์—์„œ EXAONE 4.0์€ ๋น„์Šทํ•œ ๊ทœ๋ชจ์˜ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๋ฉฐ, frontier ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•ด์„œ๋„ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

4. ํ–ฅํ›„ ๊ณ„ํš
ํ–ฅํ›„ ์ž‘์—…์˜ ์ผํ™˜์œผ๋กœ, ์ง€์› ์–ธ์–ด๋ฅผ ์ ์ง„์ ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ ํ™œ์šฉ์„ฑ์„ ์ง€์†์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

5. ์—ฐ๊ตฌ ์ƒํƒœ๊ณ„์— ๋Œ€ํ•œ ๊ธฐ์—ฌ
EXAONE 3.0 ์ถœ์‹œ ์ดํ›„, LG AI Research๋Š” open-weight ํ˜•ํƒœ๋กœ ๋ชจ๋ธ์„ ๊ณต๊ฐœํ•˜์—ฌ ์—ฐ๊ตฌ ์ƒํƒœ๊ณ„ ํ™•์žฅ์— ๊ธฐ์—ฌํ•ด์™”์œผ๋ฉฐ, ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ง€์†์ ์œผ๋กœ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•ด์™”์Šต๋‹ˆ๋‹ค.

6. ์—ฐ๋ฝ์ฒ˜ ์ •๋ณด
๋ชจ๋ธ ๊ฐœ์„  ์ œ์•ˆ์ด๋‚˜ ๋น„์ฆˆ๋‹ˆ์Šค ๊ด€๋ จ ๋ฌธ์˜๋Š” contact_us@lgresearch.ai๋กœ ์—ฐ๋ฝํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

์ฑ•ํ„ฐ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ: ์ „์ฒด ์—ฐ๊ตฌ ์„ฑ๊ณผ์˜ ์ข…ํ•ฉ๊ณผ ์ง€์†์ ์ธ ๋ฐœ์ „์„ ์œ„ํ•œ ๋ฐฉํ–ฅ ์ œ์‹œ


๊ธฐ์ˆ ์  ํ•จ์˜์™€ ์‘์šฉ

ํ•ด๋‹น ๋ถ„์•ผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

EXAONE 4.0์˜ hybrid ๋ชจ๋“œ ํ†ตํ•ฉ ์ ‘๊ทผ๋ฒ•์€ ๋‹จ์ผ ๋ชจ๋ธ์ด ์„œ๋กœ ๋‹ค๋ฅธ ์‚ฌ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค์— ์ตœ์ ํ™”๋œ ๋‘ ๊ฐ€์ง€ ์ถ”๋ก  ์ „๋žต์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด๋Š” ์‹ค์šฉ์  ๋ฐฐํฌ์—์„œ ๋ชจ๋ธ ๊ด€๋ฆฌ ๋ณต์žก์„ฑ์„ ํฌ๊ฒŒ ์ค„์ด๋Š” ํ˜์‹ ์  ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค.

๋‹ค๋ฅธ ์—ฐ๊ตฌ ์˜์—ญ์œผ๋กœ์˜ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ

Hybrid attention ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ QK-Reorder-LN๊ณผ ๊ฐ™์€ ์•„ํ‚คํ…์ฒ˜ ํ˜์‹ ์€ ๋‹ค๋ฅธ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ์ง์ ‘์ ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํŠนํžˆ long-context ์ฒ˜๋ฆฌ๊ฐ€ ์ค‘์š”ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ํ™œ์šฉ๋„๊ฐ€ ๋†’์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์‹ค์ œ ์‚ฐ์—… ์ ์šฉ์—์„œ์˜ ๊ณ ๋ ค์‚ฌํ•ญ

Agentic tool use ๊ธฐ๋Šฅ์€ ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ AI ์—์ด์ „ํŠธ ๊ตฌ์ถ•์„ ์œ„ํ•œ ์‹ค์šฉ์  ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•˜๋ฉฐ, ๋‹ค๊ตญ์–ด ์ง€์› ํ™•์žฅ์€ ๊ธ€๋กœ๋ฒŒ ์„œ๋น„์Šค ๋ฐฐํฌ์— ์ค‘์š”ํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ–์Šต๋‹ˆ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ์‹œ์‚ฌ์ 

AGAPO์™€ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ฐ•ํ™”ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ๋ฐœ์€ ์ถ”๋ก  ๋Šฅ๋ ฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ›ˆ๋ จ ๋ฐฉ๋ฒ•๋ก  ์—ฐ๊ตฌ์— ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๋ฉฐ, preference learning์„ ํ†ตํ•œ ๋ชจ๋“œ ํ†ตํ•ฉ ๋ฐฉ๋ฒ•๋ก ์€ multi-modal AI ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์ค‘์š”ํ•œ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.


๋ณธ ๋…ผ๋ฌธ์€ EXAONE 4.0์„ ํ†ตํ•ด ์‹ค์šฉ์„ฑ๊ณผ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ๋‹จ์ผ ๋ชจ๋ธ์— ํšจ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜๋ฉฐ, ํ–ฅํ›„ ๋ฒ”์šฉ AI ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์  ํ† ๋Œ€๋ฅผ ๋งˆ๋ จํ–ˆ์Šต๋‹ˆ๋‹ค.



-->