(์„ค๋ช…์ถ”๊ฐ€) Perplexity์™€ BLEU ์Šค์ฝ”์–ด์— ๋Œ€ํ•œ ๋ณด์ถฉ ์„ค๋ช…

Posted by Euisuk's Dev Log on January 27, 2025

(์„ค๋ช…์ถ”๊ฐ€) Perplexity์™€ BLEU ์Šค์ฝ”์–ด์— ๋Œ€ํ•œ ๋ณด์ถฉ ์„ค๋ช…

์›๋ณธ ๊ฒŒ์‹œ๊ธ€: https://velog.io/@euisuk-chung/์„ค๋ช…์ถ”๊ฐ€-Perplexity์™€-BLEU-์Šค์ฝ”์–ด์—-๋Œ€ํ•œ-์ƒ์„ธ-์ •๋ฆฌ

์ฑ… 19์ชฝ์— ํ•ด๋‹น ์Šค์ฝ”์–ด์— ๋Œ€ํ•œ ์–ธ๊ธ‰์€ ์žˆ์ง€๋งŒ, ๊ฐœ์ธ์ ์œผ๋กœ ์ข€ ๋” ์ •๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜์—ฌ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Perplexity

1. Perplexity๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

  • Perplexity๋Š” โ€œํ˜ผ๋ž€๋„โ€๋ผ๋Š” ๋œป์œผ๋กœ, ์–ธ์–ด ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ์–ผ๋งˆ๋‚˜ ์ž˜ ์˜ˆ์ธกํ–ˆ๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜๋Š” ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค.
  • ๋‚ฎ์€ Perplexity ๊ฐ’์€ ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ํ…์ŠคํŠธ๋ฅผ ์ž˜ ์˜ˆ์ธกํ–ˆ์Œ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๋†’์€ Perplexity ๊ฐ’์€ ๋ชจ๋ธ์ด ํ…์ŠคํŠธ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์—ˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
  • Perplexity๋Š” ๋ชจ๋ธ์ด ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•  ๋•Œ ํ‰๊ท ์ ์œผ๋กœ ๊ณ ๋ คํ•ด์•ผ ํ•  ์„ ํƒ์ง€์˜ ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ์˜ˆ๋ฅผ ๋“ค์–ด, Perplexity๊ฐ€ 10์ด๋ผ๋ฉด, ๋ชจ๋ธ์€ ํ‰๊ท ์ ์œผ๋กœ ๋‹จ์–ด ํ•˜๋‚˜๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด 10๊ฐ€์ง€ ์„ ํƒ์ง€๋ฅผ ๊ณ ๋ คํ•œ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.

Source: https://towardsdatascience.com/perplexity-intuition-and-derivation-105dd481c8f3

2. Perplexity์˜ ์ •์˜

Perplexity๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋ฉ๋‹ˆ๋‹ค:

PP(W)=P(W)โˆ’1/NPP(W) = P(W)^{-{1}/{N}}PP(W)=P(W)โˆ’1/N

์—ฌ๊ธฐ์„œ:

  • P(W)P(W)P(W): ๋ฌธ์žฅ WWW์˜ ํ™•๋ฅ  (์–ธ์–ด ๋ชจ๋ธ์ด ๋ฌธ์žฅ WWW๋ฅผ ์ƒ์„ฑํ•  ํ™•๋ฅ )
  • NNN: ๋ฌธ์žฅ WWW์˜ ๋‹จ์–ด ๊ฐœ์ˆ˜

์ด๋ฅผ ๋กœ๊ทธ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด:

PP(W)=eโˆ’1NlogโกP(W)PP(W) = e^{-\frac{1}{N} \log P(W)}PP(W)=eโˆ’N1โ€‹logP(W)

3. Perplexity์˜ ๊ณ„์‚ฐ ๊ณผ์ •

  1. ๋ฌธ์žฅ WWW์˜ ํ™•๋ฅ  ๊ณ„์‚ฐ:

    ๋ฌธ์žฅ WWW๋Š” ๊ฐ ๋‹จ์–ด์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ๋กœ ๊ณ„์‚ฐ๋ฉ๋‹ˆ๋‹ค:

    P(W)=P(w1)โ‹…P(w2โˆฃw1)โ‹…P(w3โˆฃw1,w2)โ‹ฏP(wNโˆฃw1,w2,โ€ฆ,wNโˆ’1)P(W) = P(w_1) \cdot P(w_2 w_1) \cdot P(w_3 w_1, w_2) \cdots P(w_N w_1, w_2, \dots, w_{N-1})P(W)=P(w1โ€‹)โ‹…P(w2โ€‹โˆฃw1โ€‹)โ‹…P(w3โ€‹โˆฃw1โ€‹,w2โ€‹)โ‹ฏP(wNโ€‹โˆฃw1โ€‹,w2โ€‹,โ€ฆ,wNโˆ’1โ€‹)

    ์ด ๊ณ„์‚ฐ์€ ์–ธ์–ด ๋ชจ๋ธ์ด ๋‹จ์–ด๋ฅผ ๋ฌธ๋งฅ์— ๊ธฐ๋ฐ˜ํ•ด ์–ผ๋งˆ๋‚˜ ์ž˜ ์˜ˆ์ธกํ–ˆ๋Š”์ง€๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

  2. ๋กœ๊ทธ ๋ณ€ํ™˜:

    ๊ณฑ์…ˆ ํ˜•ํƒœ์˜ ํ™•๋ฅ  P(W)P(W)P(W)๋ฅผ ๋กœ๊ทธ๋ฅผ ํ†ตํ•ด ํ•ฉ์‚ฐ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค:

    logโกP(W)=logโกP(w1)+logโกP(w2โˆฃw1)+โ‹ฏ+logโกP(wNโˆฃw1,w2,โ€ฆ,wNโˆ’1)\log P(W) = \log P(w_1) + \log P(w_2 w_1) + \dots + \log P(w_N w_1, w_2, \dots, w_{N-1})logP(W)=logP(w1โ€‹)+logP(w2โ€‹โˆฃw1โ€‹)+โ‹ฏ+logP(wNโ€‹โˆฃw1โ€‹,w2โ€‹,โ€ฆ,wNโˆ’1โ€‹)

    ์ด๋ฅผ ๋‹จ์–ด ๊ฐœ์ˆ˜ NNN์œผ๋กœ ์ •๊ทœํ™”ํ•˜๋ฉด:

    โˆ’1NlogโกP(W)=โˆ’1Nโˆ‘i=1NlogโกP(wi)-\frac{1}{N} \log P(W) = -\frac{1}{N} \sum_{i=1}^N \log P(w_i)โˆ’N1โ€‹logP(W)=โˆ’N1โ€‹i=1โˆ‘Nโ€‹logP(wiโ€‹)

  3. Perplexity ๊ณ„์‚ฐ:

    ๋กœ๊ทธ๋ฅผ ์ง€์ˆ˜ ํ•จ์ˆ˜๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ Perplexity๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค:

    PP(W)=eโˆ’1Nโˆ‘i=1NlogโกP(wi)PP(W) = e^{-\frac{1}{N} \sum_{i=1}^N \log P(w_i)}PP(W)=eโˆ’N1โ€‹โˆ‘i=1Nโ€‹logP(wiโ€‹)

    ์ด ๊ณ„์‚ฐ ๊ฒฐ๊ณผ๋Š” ์–ธ์–ด ๋ชจ๋ธ์ด ๋‹จ์–ด๋ฅผ ์–ผ๋งˆ๋‚˜ ํšจ์œจ์ ์œผ๋กœ ์˜ˆ์ธกํ–ˆ๋Š”์ง€ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

4. Perplexity์˜ ์ง๊ด€์  ํ•ด์„

  • Perplexity๋Š” ๋ชจ๋ธ์ด ๋‹จ์–ด ์‹œํ€€์Šค๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ํ‰๊ท ์ ์ธ ๋ณต์žก๋„๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ๋‚ฎ์€ Perplexity ๊ฐ’: ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ์ž˜ ์˜ˆ์ธก โ†’ ์„ ํƒ์ง€๊ฐ€ ์ ์Œ.
  • ๋†’์€ Perplexity ๊ฐ’: ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ๋ฌธ์žฅ์„ ์ž˜ ์˜ˆ์ธกํ•˜์ง€ ๋ชปํ•จ โ†’ ์„ ํƒ์ง€๊ฐ€ ๋งŽ์Œ.
  • Perplexity ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ๋ชจ๋ธ์˜ ์˜ˆ์ธก์ด ๋” ์ •ํ™•ํ•˜๋ฉฐ, ์–ธ์–ด ๋ชจ๋ธ์ด ๋” ์ ํ•ฉํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

5. Perplexity์—์„œ ์ง€์ˆ˜ (-\frac{1}{N})์„ ์‚ฌ์šฉํ•˜๋Š” ์ด์œ 

  1. ์ •๊ทœํ™”๋ฅผ ํ†ตํ•ด ํ‰๊ท ํ™”:

    • ๋ฌธ์žฅ์˜ ํ™•๋ฅ  P(W)P(W)P(W)๋Š” ๋ฌธ์žฅ์ด ๊ธธ์–ด์งˆ์ˆ˜๋ก ๋งค์šฐ ์ž‘์•„์ง€๋Š” ๊ฐ’์ด๋ฏ€๋กœ, ๋‹จ์–ด ๊ฐœ์ˆ˜ NNN์œผ๋กœ ๋‚˜๋ˆ  ํ‰๊ท  ๋‹จ์–ด ํ™•๋ฅ ์„ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.
    • ์ด๋ฅผ ํ†ตํ•ด Perplexity๋Š” ๋ฌธ์žฅ ๊ธธ์ด์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๊ณ , ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๊ณต์ •ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ์—ญ์ˆ˜ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ์˜ ํ˜ผ๋ž€๋„๋ฅผ ํ‘œํ˜„:

    • ํ™•๋ฅ  P(W)P(W)P(W)๊ฐ€ ๋†’์œผ๋ฉด Perplexity๋Š” ์ž‘์•„์ง€๊ณ , ํ™•๋ฅ  P(W)P(W)P(W)๊ฐ€ ๋‚ฎ์œผ๋ฉด Perplexity๋Š” ์ปค์ง‘๋‹ˆ๋‹ค.
    • ์ด๋Š” Perplexity๊ฐ€ โ€œ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅโ€์„ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
  3. ์ •๋ณด ์ด๋ก ์  ๊ทผ๊ฑฐ:

    • Perplexity๋Š” ์ •๋ณด ์ด๋ก ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์—”ํŠธ๋กœํ”ผ HHH์™€ ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค:H=โˆ’1Nโˆ‘i=1NlogโกP(wi)H = -\frac{1}{N} \sum_{i=1}^N \log P(w_i)H=โˆ’N1โ€‹i=1โˆ‘Nโ€‹logP(wiโ€‹)Perplexity๋Š” ์ด๋ฅผ ์ง€์ˆ˜ ํ•จ์ˆ˜๋กœ ๋ณ€ํ™˜ํ•œ ๊ฐ’:PP=eHPP = e^HPP=eH

6. Perplexity์˜ ํ™œ์šฉ

  • Perplexity๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ๋ชจ๋ธ์ด ํŠน์ • ๋ฌธ๋งฅ์—์„œ ๋‹จ์–ด๋ฅผ ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๋Š”์ง€ ํ‰๊ฐ€ํ•˜์—ฌ, ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ํ’ˆ์งˆ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ์˜ˆ๋ฅผ ๋“ค์–ด, ๋ฒˆ์—ญ ๋ชจ๋ธ, ์Œ์„ฑ ์ธ์‹ ๋ชจ๋ธ ๋“ฑ์—์„œ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋น„๊ตํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.

BLEU (Bilingual Evaluation Understudy) Score

Source: https://www.slideserve.com/cassius/overview-of-bleu

1. BLEU ์Šค์ฝ”์–ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

  • BLEU(Bilingual Evaluation Understudy) ์Šค์ฝ”์–ด๋Š” ๊ธฐ๊ณ„ ๋ฒˆ์—ญ์—์„œ ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ๊ณผ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ(reference translation) ๊ฐ„์˜ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•˜๋Š” ์ž๋™ ํ‰๊ฐ€ ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค.
  • ๋ฒˆ์—ญ๋œ ๋ฌธ์žฅ์˜ ์ •ํ™•์„ฑ(accuracy)์„ ํ‰๊ฐ€ํ•˜๋ฉฐ, ์ธ๊ฐ„ ๋ฒˆ์—ญ๊ณผ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•œ์ง€๋ฅผ ์ˆ˜์น˜ํ™”ํ•ฉ๋‹ˆ๋‹ค.
  • BLEU ์Šค์ฝ”์–ด๋Š” 0์—์„œ 1 ์‚ฌ์ด์˜ ๊ฐ’์œผ๋กœ ๊ณ„์‚ฐ๋˜๋ฉฐ, ์ผ๋ฐ˜์ ์œผ๋กœ ํผ์„ผํŠธ(0~100) ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค:
    • BLEU ์Šค์ฝ”์–ด = 1 (100%) โ†’ ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ์ด ์ฐธ์กฐ ๋ฒˆ์—ญ๊ณผ ์™„๋ฒฝํžˆ ์ผ์น˜.
    • BLEU ์Šค์ฝ”์–ด = 0 โ†’ ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ์ด ์ฐธ์กฐ ๋ฒˆ์—ญ๊ณผ ์™„์ „ํžˆ ๋‹ค๋ฆ„.

Source: https://www.slideserve.com/cassius/overview-of-bleu

2. BLEU ์Šค์ฝ”์–ด์˜ ์ •์˜

BLEU๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ฃผ์š” ์š”์†Œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค:

BLEU=BPโ‹…expโก(โˆ‘n=1Nwnโ‹…logโกPn)BLEU = BP \cdot \exp \left( \sum_{n=1}^{N} w_n \cdot \log P_n \right)BLEU=BPโ‹…exp(n=1โˆ‘Nโ€‹wnโ€‹โ‹…logPnโ€‹)

๊ตฌ์„ฑ ์š”์†Œ:

  • NNN-๊ทธ๋žจ Precision (PnP_nPnโ€‹): ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ๊ณผ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ ๊ฐ„์˜ nnn-๊ทธ๋žจ(n-gram) ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐ.
  • ๊ฐ€์ค‘์น˜ (wnw_nwnโ€‹): ๊ฐ nnn-๊ทธ๋žจ์— ๋Œ€ํ•œ ์ค‘์š”๋„๋ฅผ ์„ค์ • (์ผ๋ฐ˜์ ์œผ๋กœ ๋™์ผํ•œ ๊ฐ€์ค‘์น˜).
  • Brevity Penalty (BP): ๋ฒˆ์—ญ๋ฌธ์˜ ๊ธธ์ด๊ฐ€ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ๊ณผ ๋น„๊ตํ•ด ๋„ˆ๋ฌด ์งง์„ ๋•Œ ํŒจ๋„ํ‹ฐ๋ฅผ ๋ถ€๊ณผ.

3. BLEU ๊ณ„์‚ฐ ๊ณผ์ •

  1. nnn-๊ทธ๋žจ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ:

    • nnn-๊ทธ๋žจ์€ ๋ฒˆ์—ญ๋ฌธ์—์„œ nnn๊ฐœ์˜ ์—ฐ์†๋œ ๋‹จ์–ด๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.
    • BLEU๋Š” 111-๊ทธ๋žจ๋ถ€ํ„ฐ 444-๊ทธ๋žจ๊นŒ์ง€ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ž…๋‹ˆ๋‹ค.
    • ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ์—์„œ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ์— ์ผ์น˜ํ•˜๋Š” nnn-๊ทธ๋žจ์˜ ๋น„์œจ์„ ๊ณ„์‚ฐ:Pn=์ƒ์„ฑ๋œย ๋ฒˆ์—ญ๋ฌธ์—์„œย ์ฐธ์กฐย ๋ฒˆ์—ญ๋ฌธ๊ณผย ์ผ์น˜ํ•˜๋Š”ย n-๊ทธ๋žจย ๊ฐœ์ˆ˜์ƒ์„ฑ๋œย ๋ฒˆ์—ญ๋ฌธ์˜ย n-๊ทธ๋žจย ๊ฐœ์ˆ˜P_n = \frac{\text{์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ์—์„œ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ๊ณผ ์ผ์น˜ํ•˜๋Š” $n$-๊ทธ๋žจ ๊ฐœ์ˆ˜}}{\text{์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ์˜ $n$-๊ทธ๋žจ ๊ฐœ์ˆ˜}}Pnโ€‹=์ƒ์„ฑ๋œย ๋ฒˆ์—ญ๋ฌธ์˜ย n-๊ทธ๋žจย ๊ฐœ์ˆ˜์ƒ์„ฑ๋œย ๋ฒˆ์—ญ๋ฌธ์—์„œย ์ฐธ์กฐย ๋ฒˆ์—ญ๋ฌธ๊ณผย ์ผ์น˜ํ•˜๋Š”ย n-๊ทธ๋žจย ๊ฐœ์ˆ˜โ€‹
  2. ๊ธธ์ด ํŒจ๋„ํ‹ฐ (Brevity Penalty, BP):

    BP={1ifย c>re1โˆ’rcifย cโ‰คrBP = \begin{cases} 1 & \text{if } c > r \ e^{1 - \frac{r}{c}} & \text{if } c \leq r \end{cases}BP={1e1โˆ’crโ€‹โ€‹ifย c>rifย cโ‰คrโ€‹

    ์—ฌ๊ธฐ์„œ:

    • ccc: ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ๋ฌธ์˜ ๊ธธ์ด.
    • rrr: ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ์˜ ๊ธธ์ด.
  3. BLEU ๊ณ„์‚ฐ:

    BLEU=BPโ‹…expโก(1Nโˆ‘n=1NlogโกPn)BLEU = BP \cdot \exp \left( \frac{1}{N} \sum_{n=1}^N \log P_n \right)BLEU=BPโ‹…exp(N1โ€‹n=1โˆ‘Nโ€‹logPnโ€‹)

    BLEU๋Š” ์—ฌ๋Ÿฌ nnn-๊ทธ๋žจ์˜ ์œ ์‚ฌ๋„๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์ตœ์ข… ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

4. BLEU ์Šค์ฝ”์–ด์˜ ์ง๊ด€์  ํ•ด์„

  • BLEU๋Š” ์ƒ์„ฑ๋œ ๋ฒˆ์—ญ์ด ์ฐธ์กฐ ๋ฒˆ์—ญ๊ณผ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•œ์ง€๋ฅผ ์ˆ˜์น˜ํ™”ํ•ฉ๋‹ˆ๋‹ค.
    • PnP_nPnโ€‹: ๊ฐ nnn-๊ทธ๋žจ์— ๋Œ€ํ•ด ์–ผ๋งˆ๋‚˜ ์ผ์น˜ํ–ˆ๋Š”์ง€๋ฅผ ์ธก์ •.
    • BLEU๋Š” nnn-๊ทธ๋žจ Precision ๊ฐ’์„ ์ข…ํ•ฉํ•˜์—ฌ, ๋ฒˆ์—ญ๋ฌธ์˜ ์ •ํ™•์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์œ ์ฐฝ์„ฑ์„ ํ•จ๊ป˜ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

5. BLEU ์Šค์ฝ”์–ด์˜ ํ•œ๊ณ„

  1. ๋ฌธ๋งฅ ๋ฐ ์˜๋ฏธ ๋ฌด์‹œ:

    • BLEU๋Š” ๋‹จ์ˆœํžˆ nnn-๊ทธ๋žจ ์œ ์‚ฌ๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฏ€๋กœ, ๋ฌธ์žฅ์˜ ์˜๋ฏธ๋‚˜ ๋ฌธ๋งฅ์  ์œ ์ฐฝ์„ฑ์€ ํ‰๊ฐ€ํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
  2. ๋‹ค์–‘ํ•œ ํ‘œํ˜„์˜ ํ‰๊ฐ€ ๋ถ€์กฑ:

    • BLEU๋Š” ๋‹จ์ผ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ๊ณผ์˜ ๋น„๊ต๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฏ€๋กœ, ๋™์ผํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ํ‘œํ˜„์„ ์ œ๋Œ€๋กœ ํ‰๊ฐ€ํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
  3. ์งง์€ ๋ฌธ์žฅ์—์„œ ๋ถ€์ •ํ™•:

    • ๊ธธ์ด ํŒจ๋„ํ‹ฐ๊ฐ€ ์ ์šฉ๋˜๋”๋ผ๋„ ์งง์€ ๋ฌธ์žฅ์—์„œ BLEU์˜ ํ‰๊ฐ€๊ฐ€ ์™œ๊ณก๋  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

6. BLEU์˜ ํ™œ์šฉ

  • BLEU๋Š” ๊ธฐ๊ณ„ ๋ฒˆ์—ญ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ๋ฒˆ์—ญ ํ’ˆ์งˆ ์ž๋™ ํ‰๊ฐ€:
    • ์ธ๊ฐ„ ํ‰๊ฐ€๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ๋ฒˆ์—ญ ํ’ˆ์งˆ์„ ์ •๋Ÿ‰ํ™”.
  • ๋ชจ๋ธ ์„ฑ๋Šฅ ๊ฐœ์„ :
    • BLEU ์ ์ˆ˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐ ํ™œ์šฉ.

7. BLEU์™€ Perplexity์˜ ๋น„๊ต

  • BLEU๋Š” ๋ฒˆ์—ญ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๋ฉฐ, Perplexity๋Š” ์–ธ์–ด ๋ชจ๋ธ์˜ ์ผ๋ฐ˜์ ์ธ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ๋‘ ์ง€ํ‘œ๋Š” ์ƒํ˜ธ ๋ณด์™„์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฉฐ, ๊ฐ๊ฐ ๋‹ค๋ฅธ ์ธก๋ฉด์—์„œ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

์š”์•ฝ

  • Perplexity์™€ BLEU๋Š” ๋ชจ๋‘ ์–ธ์–ด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค.
    • Perplexity๋Š” ๋ชจ๋ธ์ด ๋‹จ์–ด๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์˜ˆ์ธกํ–ˆ๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜๋ฉฐ, ๋‚ฎ์„์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•ฉ๋‹ˆ๋‹ค.
    • BLEU๋Š” ๋ฒˆ์—ญ๋ฌธ๊ณผ ์ฐธ์กฐ ๋ฒˆ์—ญ๋ฌธ์˜ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•˜๋ฉฐ, ์ ์ˆ˜๊ฐ€ ๋†’์„์ˆ˜๋ก ๋ฒˆ์—ญ ํ’ˆ์งˆ์ด ๋›ฐ์–ด๋‚ฉ๋‹ˆ๋‹ค.
  • ๋‘ ์ง€ํ‘œ ๋ชจ๋‘ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ด€์ ์—์„œ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋ฉฐ, ๋ณด์™„์ ์œผ๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • Perplexity๋Š” ๋ชจ๋ธ์˜ ํ•™์Šต ํ’ˆ์งˆ ํ‰๊ฐ€์—, BLEU๋Š” ๋ฒˆ์—ญ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ๋ฌผ ํ‰๊ฐ€์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.


-->