[๊ฐœ๋…] Deep Learning Normalization Techniques

Posted by Euisuk's Dev Log on July 2, 2024

[๊ฐœ๋…] Deep Learning Normalization Techniques

์›๋ณธ ๊ฒŒ์‹œ๊ธ€: https://velog.io/@euisuk-chung/๊ฐœ๋…์ •๋ฆฌ-Deep-Learning-Normalization

๋”ฅ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™” ๊ธฐ๋ฒ•

์ถœ์ฒ˜: https://theaisummer.com/normalization/

์ •๊ทœํ™”์˜ ์ •์˜์™€ ๋ชฉ์ 

์ •๊ทœํ™”(Normalization)๋Š” ๋ฐ์ดํ„ฐ์˜ ์Šค์ผ€์ผ์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์œผ๋กœ, ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹์—์„œ ๋ชจ๋‘ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™”์™€ ๋”ฅ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™”๋Š” ๊ทธ ๋ชฉ์ ๊ณผ ๋ฐฉ๋ฒ•์— ์žˆ์–ด ์•ฝ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™”

์ „ํ†ต์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ์ •๊ทœํ™”์˜ ์ฃผ์š” ๋ชฉ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  1. ํŠน์„ฑ ๊ฐ„ ๋‹จ์œ„ ์ฐจ์ด ํ•ด์†Œ: ์„œ๋กœ ๋‹ค๋ฅธ ๋‹จ์œ„๋‚˜ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง„ ํŠน์„ฑ๋“ค์„ ๋™์ผํ•œ ์Šค์ผ€์ผ๋กœ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
  2. ๋ชจ๋ธ์˜ ์•ˆ์ •์„ฑ ํ–ฅ์ƒ: ํŠน์„ฑ ๊ฐ„ ์Šค์ผ€์ผ ์ฐจ์ด๋กœ ์ธํ•œ ํ•™์Šต์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ์ค„์ž…๋‹ˆ๋‹ค.
  3. ํ•™์Šต ์†๋„ ๊ฐœ์„ : ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• ๋“ฑ์˜ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋†’์ž…๋‹ˆ๋‹ค.

์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•:

  • Min-Max Scaling: ๋ฐ์ดํ„ฐ๋ฅผ [0, 1] ๋ฒ”์œ„๋กœ ์Šค์ผ€์ผ๋ง
  • tandardization : ํ‰๊ท ์„ 0, ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ 1๋กœ ์กฐ์ •

๋”ฅ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™”

๋”ฅ๋Ÿฌ๋‹์—์„œ์˜ ์ •๊ทœํ™”๋Š” ์œ„์˜ ๋ชฉ์ ๋“ค์„ ํฌํ•จํ•˜๋ฉด์„œ๋„, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ถ”๊ฐ€์ ์ธ ๋ชฉ์ ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค:

  1. ๋‚ด๋ถ€ ๊ณต๋ณ€๋Ÿ‰ ๋ณ€ํ™” ๊ฐ์†Œ: ๋„คํŠธ์›Œํฌ์˜ ๊ฐ ์ธต์—์„œ ์ž…๋ ฅ ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ์ค„์ž…๋‹ˆ๋‹ค.

    ๋‚ด๋ถ€ ๊ณต๋ณ€๋Ÿ‰ ๋ณ€ํ™”(Internal Coveriate Shift)๋ž€?

    โœ๏ธInternal Covariate Shift๋Š” ๋„คํŠธ์›Œํฌ์˜ ๊ฐ Layer๋‚˜ Activation๋งˆ๋‹ค ์ถœ๋ ฅ๊ฐ’์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ Layer๋งˆ๋‹ค ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์„ ๋งํ•œ๋‹ค.

  2. ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค/ํญ๋ฐœ ๋ฌธ์ œ ์™„ํ™”: ๊นŠ์€ ๋„คํŠธ์›Œํฌ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค ๋˜๋Š” ํญ๋ฐœ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•ฉ๋‹ˆ๋‹ค.
  3. ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ ํ–ฅ์ƒ: ๊ณผ์ ํ•ฉ์„ ์ค„์ด๊ณ  ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.
  4. ํ•™์Šต ์•ˆ์ •์„ฑ ์ œ๊ณต: ๋†’์€ ํ•™์Šต๋ฅ  ์‚ฌ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์—ฌ ํ•™์Šต์„ ๊ฐ€์†ํ™”ํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ์ฐจ์ด์ 

  1. ์ ์šฉ ์‹œ์ :

    • ์ „ํ†ต์  ML: ์ฃผ๋กœ ์ „์ฒ˜๋ฆฌ ๋‹จ๊ณ„์—์„œ ๋ฐ์ดํ„ฐ์…‹ ์ „์ฒด์— ์ ์šฉ
    • ๋”ฅ๋Ÿฌ๋‹: ๋„คํŠธ์›Œํฌ์˜ ๊ฐ ์ธต์—์„œ ๋™์ ์œผ๋กœ ์ ์šฉ
  2. ์ ์šฉ ๋ฒ”์œ„:

    • ์ „ํ†ต์  ML: ์ฃผ๋กœ ์ž…๋ ฅ ํŠน์„ฑ์— ๋Œ€ํ•ด ์ ์šฉ
    • ๋”ฅ๋Ÿฌ๋‹: ๋„คํŠธ์›Œํฌ์˜ ์ค‘๊ฐ„ ์ธต์˜ ํ™œ์„ฑํ™” ๊ฐ’์—๋„ ์ ์šฉ
  3. ํ•™์Šต ๊ฐ€๋Šฅ์„ฑ:

    • ์ „ํ†ต์  ML: ๊ณ ์ •๋œ ๋ณ€ํ™˜
    • ๋”ฅ๋Ÿฌ๋‹: ํ•™์Šต ๊ฐ€๋Šฅํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Œ
  4. ๋ชฉ์ ์˜ ํ™•์žฅ:

    • ์ „ํ†ต์  ML: ์ฃผ๋กœ ๋ฐ์ดํ„ฐ ์Šค์ผ€์ผ ์กฐ์ •์— ์ดˆ์ 
    • ๋”ฅ๋Ÿฌ๋‹: ๋‚ด๋ถ€ ๊ณต๋ณ€๋Ÿ‰ ๋ณ€ํ™” ๊ฐ์†Œ, ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค/ํญ๋ฐœ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๋ชฉ์  ํฌํ•จ

์ด๋Ÿฌํ•œ ์ฐจ์ด์ ์„ ์ธ์‹ํ•˜๊ณ  ๊ฐ ์ƒํ™ฉ์— ๋งž๋Š” ์ •๊ทœํ™” ๊ธฐ๋ฒ•์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธ€์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์ •๊ทœํ™” ๊ธฐ๋ฒ•๋“ค์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•:

  • ๋ฐฐ์น˜ ์ •๊ทœํ™” (Batch Normalization)
  • ๋ ˆ์ด์–ด ์ •๊ทœํ™” (Layer Normalization)
  • ์ธ์Šคํ„ด์Šค ์ •๊ทœํ™” (Instance Normalization)
  • ๊ทธ๋ฃน ์ •๊ทœํ™” (Group Normalization)
  • RMS ์ •๊ทœํ™” (RMS Normalization)

๋ฐฐ์น˜ ์ •๊ทœํ™” (Batch Normalization)

๊ฐœ๋…

๋ฐฐ์น˜ ์ •๊ทœํ™”๋Š” 2015๋…„ Sergey Ioffe์™€ Christian Szegedy๊ฐ€ ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์œผ๋กœ, ์‹ ๊ฒฝ๋ง์˜ ๊ฐ ์ธต์—์„œ ์ž…๋ ฅ์„ ์ •๊ทœํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

์ž‘๋™ ์›๋ฆฌ

  1. ๋ฏธ๋‹ˆ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

  2. ์ž…๋ ฅ๊ฐ’์„ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.

  3. ์Šค์ผ€์ผ(ฮณ)๊ณผ ์‹œํ”„ํŠธ(ฮฒ) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

  • ๊ฐ ๋ ˆ์ด์–ด/์ฑ„๋„๋งˆ๋‹ค ๋‹ค๋ฅธ ฮณ์™€ ฮฒ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ๋„คํŠธ์›Œํฌ๋Š” ๊ฐ ๋ ˆ์ด์–ด์˜ ํŠน์„ฑ๊ณผ ์—ญํ• ์— ๋งž๋Š” ์ตœ์ ์˜ ์ •๊ทœํ™”๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ˆ˜์‹

y=ฮณโˆ—((xโˆ’ฮผB)/sqrt(ฯƒB2+ฮต))+ฮฒy = ฮณ * ((x - ฮผ_B) / sqrt(ฯƒ_B^2 + ฮต)) + ฮฒy=ฮณโˆ—((xโˆ’ฮผBโ€‹)/sqrt(ฯƒB2โ€‹+ฮต))+ฮฒ

์—ฌ๊ธฐ์„œ ฮผBฮผ_BฮผBโ€‹๋Š” ๋ฐฐ์น˜ ํ‰๊ท , ฯƒB2ฯƒ_B^2ฯƒB2โ€‹๋Š” ๋ฐฐ์น˜ ๋ถ„์‚ฐ, ฮต์€ ์ž‘์€ ์ƒ์ˆ˜, ฮณ์™€ ฮฒ๋Š” ํ•™์Šต ๊ฐ€๋Šฅํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# ์ž…๋ ฅ ๋ฐฐ์น˜
import torch
import torch.nn as nn

X = torch.tensor([[1,2,3],
                  [4,5,6],
                  [7,8,9]], dtype=torch.float32)

print(X.shape)
print(X)
# torch.Size([3, 3])
# tensor([[1., 2., 3.],
#         [4., 5., 6.],
#         [7., 8., 9.]])

# 3์€ ํŠน์„ฑ(feature) ์ˆ˜
bn = nn.BatchNorm1d(3)  
output_bn = bn(X)
print("Batch Normalization ๊ฒฐ๊ณผ:")
print(output_bn)

# Batch Normalization ๊ฒฐ๊ณผ:
# tensor([[-1.2247, -1.2247, -1.2247],
#         [ 0.0000,  0.0000,  0.0000],
#         [ 1.2247,  1.2247,  1.2247]], grad_fn=<NativeBatchNormBackward0>)

# ์ง์ ‘ ๊ตฌํ˜„
def batch_norm(X, eps=1e-5):
    mean = X.mean(dim=0, keepdim=True)
    var = X.var(dim=0, unbiased=False, keepdim=True)
    X_norm = (X - mean) / torch.sqrt(var + eps)
    return X_norm

print("Batch Normalization ๊ฒฐ๊ณผ:")
print(batch_norm(X))

# Batch Normalization ๊ฒฐ๊ณผ:
# tensor([[-1.2247, -1.2247, -1.2247],
#         [ 0.0000,  0.0000,  0.0000],
#         [ 1.2247,  1.2247,  1.2247]])

์žฅ๋‹จ์ 

  • ์žฅ์ :

    • ํ•™์Šต ์†๋„ ํ–ฅ์ƒ
    • ๋‚ด๋ถ€ ๊ณต๋ณ€๋Ÿ‰ ๋ณ€ํ™”(Internal Covariate Shift) ๊ฐ์†Œ
    • ๋” ๋†’์€ ํ•™์Šต๋ฅ  ์‚ฌ์šฉ ๊ฐ€๋Šฅ
  • ๋‹จ์ :

    • ์ž‘์€ ๋ฏธ๋‹ˆ๋ฐฐ์น˜์—์„œ ๋ถˆ์•ˆ์ •ํ•  ์ˆ˜ ์žˆ์Œ
    • ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(RNN)์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์›€

์‘์šฉ ์‚ฌ๋ก€

  • CNN ๋ชจ๋ธ์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉ
  • EfficientNet: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ CNN ์•„ํ‚คํ…์ฒ˜
  • BERT: ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ํŠธ๋žœ์Šคํฌ๋จธ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ

๋ ˆ์ด์–ด ์ •๊ทœํ™” (Layer Normalization)

๊ฐœ๋…

๋ ˆ์ด์–ด ์ •๊ทœํ™”๋Š” 2016๋…„ Jimmy Lei Ba ๋“ฑ์ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์œผ๋กœ, ๊ฐ ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ๋ชจ๋“  ๋‰ด๋Ÿฐ์˜ ์ถœ๋ ฅ์„ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.

์ž‘๋™ ์›๋ฆฌ

  1. ๊ฐ ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ๋ชจ๋“  ๋‰ด๋Ÿฐ ์ถœ๋ ฅ์˜ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

  2. ๊ณ„์‚ฐ๋œ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์œผ๋กœ ์ž…๋ ฅ์„ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.

  3. ์Šค์ผ€์ผ(ฮณ)๊ณผ ์‹œํ”„ํŠธ(ฮฒ) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜์‹

๋‹ค์Œ์€ ๋ ˆ์ด์–ด ์ •๊ทœํ™”์˜ ์ˆ˜์‹์ž…๋‹ˆ๋‹ค:

y=ฮณโˆ—((xโˆ’ฮผL)/sqrt(ฯƒL2+ฮต))+ฮฒy = ฮณ * ((x - ฮผ_L) / sqrt(ฯƒ_L^2 + ฮต)) + ฮฒy=ฮณโˆ—((xโˆ’ฮผLโ€‹)/sqrt(ฯƒL2โ€‹+ฮต))+ฮฒ

  • ์—ฌ๊ธฐ์„œ ฮผLฮผ_LฮผLโ€‹์€ ๋ ˆ์ด์–ด ํ‰๊ท , ฯƒL2ฯƒ_L^2ฯƒL2โ€‹๋Š” ๋ ˆ์ด์–ด ๋ถ„์‚ฐ์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# ์ž…๋ ฅ ๋ฐฐ์น˜
import torch
import torch.nn as nn

X = torch.tensor([[1,2,3],
                  [4,5,6],
                  [7,8,9]], dtype=torch.float32)

print(X.shape)
print(X)
# torch.Size([3, 3])
# tensor([[1., 2., 3.],
#         [4., 5., 6.],
#         [7., 8., 9.]])

ln = nn.LayerNorm(3)  # 3์€ ์ •๊ทœํ™”ํ•  ๋งˆ์ง€๋ง‰ ์ฐจ์›์˜ ํฌ๊ธฐ
output_ln = ln(X)
print("Layer Normalization ๊ฒฐ๊ณผ:")
print(output_ln)

# Layer Normalization ๊ฒฐ๊ณผ:
# tensor([[-1.2247,  0.0000,  1.2247],
#         [-1.2247,  0.0000,  1.2247],
#         [-1.2247,  0.0000,  1.2247]], grad_fn=<NativeLayerNormBackward0>)

def layer_norm(X, eps=1e-5):
    mean = X.mean(dim=-1, keepdim=True)
    var = X.var(dim=-1, unbiased=False, keepdim=True)
    X_norm = (X - mean) / torch.sqrt(var + eps)
    return X_norm

print("Layer Normalization ๊ฒฐ๊ณผ:")
print(layer_norm(X))

# Layer Normalization ๊ฒฐ๊ณผ:
# tensor([[-1.2247,  0.0000,  1.2247],
#         [-1.2247,  0.0000,  1.2247],
#         [-1.2247,  0.0000,  1.2247]])

์žฅ๋‹จ์ 

  • ์žฅ์ :

    • ๋ฐฐ์น˜ ํฌ๊ธฐ์— ๋…๋ฆฝ์ 
    • RNN์— ์ ์šฉ ๊ฐ€๋Šฅ
    • ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์ž‘์—…์— ํšจ๊ณผ์ 
  • ๋‹จ์ :

    • CNN์—์„œ๋Š” ๋ฐฐ์น˜ ์ •๊ทœํ™”๋ณด๋‹ค ์„ฑ๋Šฅ์ด ๋–จ์–ด์งˆ ์ˆ˜ ์žˆ์Œ

์‘์šฉ ์‚ฌ๋ก€

  • RNN, ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์—์„œ ์ฃผ๋กœ ์‚ฌ์šฉ
  • GPT (Generative Pre-trained Transformer) ์‹œ๋ฆฌ์ฆˆ
  • ALBERT (A Lite BERT)

์ธ์Šคํ„ด์Šค ์ •๊ทœํ™” (Instance Normalization)

๊ฐœ๋…

์ธ์Šคํ„ด์Šค ์ •๊ทœํ™”๋Š” 2016๋…„ Dmitry Ulyanov ๋“ฑ์ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์œผ๋กœ, ์ฃผ๋กœ ์Šคํƒ€์ผ ์ „์ด ์ž‘์—…์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

์ž‘๋™ ์›๋ฆฌ

  1. ๊ฐ ์ƒ˜ํ”Œ์˜ ๊ฐ ์ฑ„๋„์— ๋Œ€ํ•ด ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

  2. ๊ณ„์‚ฐ๋œ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์œผ๋กœ ์ž…๋ ฅ์„ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.

  3. ์Šค์ผ€์ผ(ฮณ)๊ณผ ์‹œํ”„ํŠธ(ฮฒ) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜์‹

ynchw=ฮณโˆ—((xnchwโˆ’ฮผnc)/sqrt(ฯƒnc2+ฮต))+ฮฒy_nchw = ฮณ * ((x_nchw - ฮผ_nc) / sqrt(ฯƒ_nc^2 + ฮต)) + ฮฒynโ€‹chw=ฮณโˆ—((xnโ€‹chwโˆ’ฮผnโ€‹c)/sqrt(ฯƒnโ€‹c2+ฮต))+ฮฒ

  • ์—ฌ๊ธฐ์„œ n์€ ์ƒ˜ํ”Œ, c๋Š” ์ฑ„๋„, h์™€ w๋Š” ๋†’์ด์™€ ๋„ˆ๋น„๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

์˜ˆ์‹œ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# ์ž…๋ ฅ (2๊ฐœ์˜ ์ƒ˜ํ”Œ, ๊ฐ 2x2 ํฌ๊ธฐ, 4 ์ฑ„๋„)
X = torch.tensor([[
                  [[1, 2], [3, 4]],
                  [[5, 6], [7, 8]],
                  [[9, 10], [11, 12]],
                  [[13, 14], [15, 16]]
                  ],
                  [
                  [[17, 18], [19, 20]],
                  [[21, 22], [23, 24]],
                  [[25, 26], [27, 28]],
                  [[29, 30], [31, 32]]
                  ]], dtype=torch.float32)
print(X.shape)
# torch.Size([2, 4, 2, 2])
# tensor([[[[ 1.,  2.],
#           [ 3.,  4.]],
# 
#          [[ 5.,  6.],
#           [ 7.,  8.]],
# 
#          [[ 9., 10.],
#           [11., 12.]],
# 
#          [[13., 14.],
#           [15., 16.]]],
# 
# 
#         [[[17., 18.],
#           [19., 20.]],
# 
#          [[21., 22.],
#           [23., 24.]],
# 
#          [[25., 26.],
#           [27., 28.]],
# 
#          [[29., 30.],
#           [31., 32.]]]])

# Instance Normalization์€ ์ฃผ๋กœ 2D๋‚˜ 3D ๋ฐ์ดํ„ฐ์— ์‚ฌ์šฉ๋˜์ง€๋งŒ, 
# InstanceNorm2d ์ ์šฉ (4์€ ์ฑ„๋„ ์ˆ˜)
in_norm = nn.InstanceNorm2d(4, affine=True)
output_in = in_norm(X)
print("Instance Normalization ๊ฒฐ๊ณผ (PyTorch):")
print(output_in)

# Instance Normalization ๊ฒฐ๊ณผ (PyTorch):
# tensor([[[[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]]],
# 
# 
#         [[[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]]]], grad_fn=<ViewBackward0>)

def instance_norm(X, eps=1e-5):
    mean = X.mean(dim=(2, 3), keepdim=True)
    var = X.var(dim=(2, 3), unbiased=False, keepdim=True)
    X_norm = (X - mean) / torch.sqrt(var + eps)
    return X_norm

print("Instance Normalization ๊ฒฐ๊ณผ (์ˆ˜๋™ ๊ตฌํ˜„):")
print(instance_norm(X))

# Instance Normalization ๊ฒฐ๊ณผ (์ˆ˜๋™ ๊ตฌํ˜„):
# tensor([[[[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]]],
# 
# 
#         [[[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]],
# 
#          [[-1.3416, -0.4472],
#           [ 0.4472,  1.3416]]]])

๐Ÿ”Ž ์™œ dim = (2,3)์ธ๊ฐ€?

โœ๏ธ dim=(2, 3)์€ ํ…์„œ์˜ ๋งˆ์ง€๋ง‰ ๋‘ ์ฐจ์›(๋†’์ด์™€ ๋„ˆ๋น„)์— ๋Œ€ํ•ด ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•˜๋ผ๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.

  • ํ…์„œ ํ˜•ํƒœ: (๋ฐฐ์น˜, ์ฑ„๋„, ๋†’์ด, ๋„ˆ๋น„)
    • dim=0: ๋ฐฐ์น˜ ์ฐจ์›
    • dim=1: ์ฑ„๋„ ์ฐจ์›
    • dim=2: ๋†’์ด ์ฐจ์›
    • dim=3: ๋„ˆ๋น„ ์ฐจ์›

(๋”ํ•˜๊ธฐ๋Š” ํ™•์žฅ์˜ ๊ฐœ๋…์ด์ง€ ์‹ค์ œ ๋”ํ–ˆ๋‹ค๋Š” ์˜๋ฏธ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค ><)

์žฅ๋‹จ์ 

  • ์žฅ์ :

    • ์Šคํƒ€์ผ ์ „์ด ์ž‘์—…์— ํšจ๊ณผ์ 
    • ๋ฐฐ์น˜ ํฌ๊ธฐ์— ๋…๋ฆฝ์ 
  • ๋‹จ์ :

    • ์ฑ„๋„ ๊ฐ„ ์ •๋ณด๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์Œ

์‘์šฉ ์‚ฌ๋ก€

  • ์Šคํƒ€์ผ ์ „์ด(Style Transfer) ๊ณ„์—ด ๋ชจ๋ธ
  • ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ: GAN(Generative Adversarial Networks) ๊ณ„์—ด ๋ชจ๋ธ

๊ทธ๋ฃน ์ •๊ทœํ™”(Group Normalization)

Group Normalization์€ 2018๋…„ Yuxin Wu์™€ Kaiming He๊ฐ€ ์ œ์•ˆํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๊ธฐ๋ฒ•์€ Batch Normalization (BN)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

BN์˜ ์ฃผ์š” ํ•œ๊ณ„์ 

  • ์ž‘์€ ๋ฐฐ์น˜ ํฌ๊ธฐ์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜
  • ๋ฐฐ์น˜ ํ†ต๊ณ„์— ์˜์กดํ•˜์—ฌ ๋ฐฐ์น˜ ๊ฐ„ ๋ณ€๋™์„ฑ์ด ํผ

์ž‘๋™ ์›๋ฆฌ

  1. GN์€ ์ฑ„๋„์„ ์—ฌ๋Ÿฌ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ ๊ทธ๋ฃน ๋‚ด์—์„œ ์ •๊ทœํ™”๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

  2. ์ฑ„๋„ ๊ทธ๋ฃนํ™”: ์ž…๋ ฅ ํŠน์„ฑ์˜ ์ฑ„๋„์„ G๊ฐœ์˜ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.

  3. ๊ทธ๋ฃน๋ณ„ ์ •๊ทœํ™”: ๊ฐ ๊ทธ๋ฃน ๋‚ด์—์„œ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.

  4. ์ •๊ทœํ™”๋œ ๊ฐ’์— ํ•™์Šต ๊ฐ€๋Šฅํ•œ ์Šค์ผ€์ผ(ฮณ)๊ณผ ์‹œํ”„ํŠธ(ฮฒ) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜์‹

ฮผ = (1/m) *ฮฃx

ฯƒยฒ = (1/m)* ฮฃ(x - ฮผ)ยฒ

y = (x - ฮผ) / โˆš(ฯƒยฒ + ฮต)

  • ์—ฌ๊ธฐ์„œ m์€ ๊ทธ๋ฃน ๋‚ด ์›์†Œ์˜ ์ˆ˜, ฮต์€ ์ž‘์€ ์ƒ์ˆ˜์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn

# ์ž…๋ ฅ (2๊ฐœ์˜ ์ƒ˜ํ”Œ, ๊ฐ 2x2 ํฌ๊ธฐ, 4 ์ฑ„๋„)
X = torch.tensor([[
                  [[1, 2], [3, 4]],
                  [[5, 6], [7, 8]],
                  [[9, 10], [11, 12]],
                  [[13, 14], [15, 16]]
                  ],
                  [
                  [[17, 18], [19, 20]],
                  [[21, 22], [23, 24]],
                  [[25, 26], [27, 28]],
                  [[29, 30], [31, 32]]
                  ]], dtype=torch.float32)
print(X.shape)

def group_norm_pytorch(X, num_groups=2):  # ๊ทธ๋ฃน ์ˆ˜๋ฅผ 2์œผ๋กœ ๋ณ€๊ฒฝ
    # num_groups: ๊ทธ๋ฃน์˜ ์ˆ˜
    # num_channels: ์ฑ„๋„์˜ ์ˆ˜ (X์˜ ๋‘ ๋ฒˆ์งธ ์ฐจ์›)
    num_channels = X.shape[1]
    gn = nn.GroupNorm(num_groups, num_channels)
    return gn(X)

# PyTorch GroupNorm ์ ์šฉ
gn_pytorch = group_norm_pytorch(X)
print("\nPyTorch GroupNorm ๊ฒฐ๊ณผ:")
print(gn_pytorch)


# PyTorch GroupNorm ๊ฒฐ๊ณผ:
# tensor([[[[-1.5275, -1.0911],
#           [-0.6547, -0.2182]],
# 
#          [[ 0.2182,  0.6547],
#           [ 1.0911,  1.5275]],
# 
#          [[-1.5275, -1.0911],
#           [-0.6547, -0.2182]],
# 
#          [[ 0.2182,  0.6547],
#           [ 1.0911,  1.5275]]],
# 
# 
#         [[[-1.5275, -1.0911],
#           [-0.6547, -0.2182]],
# 
#          [[ 0.2182,  0.6547],
#           [ 1.0911,  1.5275]],
# 
#          [[-1.5275, -1.0911],
#           [-0.6547, -0.2182]],
# 
#          [[ 0.2182,  0.6547],
#           [ 1.0911,  1.5275]]]], grad_fn=<NativeGroupNormBackward0>)

(๋”ํ•˜๊ธฐ๋Š” ํ™•์žฅ์˜ ๊ฐœ๋…์ด์ง€ ์‹ค์ œ ๋”ํ–ˆ๋‹ค๋Š” ์˜๋ฏธ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค ><)

์žฅ๋‹จ์ 

  • ์žฅ์ 

    • ๋ฐฐ์น˜ ํฌ๊ธฐ์— ๋…๋ฆฝ์ ์œผ๋กœ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.
    • ์ž‘์€ ๋ฐฐ์น˜ ํฌ๊ธฐ์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.
    • CNN์—์„œ ๋ฐฐ์น˜ ์ •๊ทœํ™”๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋‹จ์ 

    • ๊ทธ๋ฃน ์ˆ˜๋ฅผ ์ถ”๊ฐ€์ ์ธ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์„ค์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

ํ™œ์šฉ ์‚ฌ๋ก€

  • ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ์„ธ๊ทธ๋จผํ…Œ์ด์…˜ ๋ชจ๋ธ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ์†Œ๊ทœ๋ชจ ๋ฐฐ์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ์ž‘์—…์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

RMS ์ •๊ทœํ™” (RMS Normalization)

๊ฐœ๋…

RMS Norm (Root Mean Square Layer Normalization)์€ 2019๋…„ Biao Zhang๊ณผ Rico Sennrich๊ฐ€ ๋ฐœํ‘œํ•œ ๋…ผ๋ฌธ โ€œRoot Mean Square Layer Normalizationโ€์—์„œ ์ฒ˜์Œ ์†Œ๊ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. RMS ์ •๊ทœํ™”๋Š” ์ตœ๊ทผ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ๊ธฐ๋ฒ•์œผ๋กœ, ๋ ˆ์ด์–ด ์ •๊ทœํ™”๋ฅผ ๊ฐ„์†Œํ™”ํ•œ ๋ฒ„์ „์ž…๋‹ˆ๋‹ค.

์ž‘๋™ ์›๋ฆฌ

  1. ๊ฐ ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ๋ชจ๋“  ํŠน์„ฑ์˜ ์ œ๊ณฑํ‰๊ท ์ œ๊ณฑ๊ทผ(RMS)์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

  2. ๊ณ„์‚ฐ๋œ RMS ๊ฐ’์œผ๋กœ ์ž…๋ ฅ์„ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.

  3. ์Šค์ผ€์ผ(ฮณ) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜์‹

y=x/โˆš(mean(xยฒ)+ฮต)y = x / โˆš(mean(xยฒ) + ฮต)y=x/โˆš(mean(xยฒ)+ฮต)

  • ์—ฌ๊ธฐ์„œ x๋Š” ์ž…๋ ฅ, ฮต์€ ์ž‘์€ ์ƒ์ˆ˜์ž…๋‹ˆ๋‹ค.

๐Ÿ’ก RMS vs Layer Norm

Layer Norm๊ณผ RMS Norm์˜ ์ฃผ์š” ์ฐจ์ด์ :

  • ์ค‘์‹ฌํ™”(centering) ์ œ๊ฑฐ:
    • Layer Norm: (x - ฮผ) / โˆš(ฯƒยฒ + ฮต)
    • RMS Norm: x / โˆš(mean(xยฒ) + ฮต)
  • ๋ถ„์‚ฐ ๊ณ„์‚ฐ ๋ฐฉ์‹:
    • Layer Norm: ฯƒยฒ = mean((x - ฮผ)ยฒ)
    • RMS Norm: mean(xยฒ)๋ฅผ ์ง์ ‘ ์‚ฌ์šฉ

๐Ÿ”Ž RMS๋กœ ๋‚˜๋ˆ„๋Š” ์˜๋ฏธ

  • ๊ณ„์‚ฐ ํšจ์œจ์„ฑ: mean(xยฒ)๋Š” ฯƒยฒ๋ณด๋‹ค ๊ณ„์‚ฐ์ด ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค.
  • ์Šค์ผ€์ผ ๋ถˆ๋ณ€์„ฑ ์œ ์ง€: ์ž…๋ ฅ์˜ ์Šค์ผ€์ผ์— ๊ด€๊ณ„์—†์ด ์ผ์ •ํ•œ ์ถœ๋ ฅ ๋ฒ”์œ„๋ฅผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  • ์ •๊ทœํ™” ํšจ๊ณผ: ์ž…๋ ฅ์„ ์ ์ ˆํ•œ ๋ฒ”์œ„๋กœ ์กฐ์ •ํ•˜์—ฌ ํ•™์Šต ์•ˆ์ •์„ฑ์„ ๋†’์ž…๋‹ˆ๋‹ค.

์˜ˆ์‹œ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import torch
import torch.nn as nn

X = torch.tensor([[1,2,3],
                  [4,5,6],
                  [7,8,9]], dtype=torch.float32)
print(X)
# tensor([[1., 2., 3.],
#         [4., 5., 6.],
#         [7., 8., 9.]])

def rms_norm(X, eps=1e-8):
    rms = torch.sqrt(torch.mean(X**2, dim=-1, keepdim=True) + eps)
    X_norm = X / rms
    return X_norm

print("RMS Normalization ๊ฒฐ๊ณผ:")
print(rms_norm(X))

# RMS Normalization ๊ฒฐ๊ณผ:
# tensor([[0.4629, 0.9258, 1.3887],
#         [0.7895, 0.9869, 1.1843],
#         [0.8705, 0.9948, 1.1192]], grad_fn=<MulBackward0>)

์žฅ๋‹จ์ 

  • ์žฅ์ :

    • ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์ด ๋†’์Œ
    • ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์— ์ ํ•ฉ
    • ํ‰๊ท ์„ ๊ณ„์‚ฐํ•˜์ง€ ์•Š์•„ ๋” ์•ˆ์ •์ 
  • ๋‹จ์ :

    • ๋ ˆ์ด์–ด ์ •๊ทœํ™”์— ๋น„ํ•ด ํ‘œํ˜„๋ ฅ์ด ๋‹ค์†Œ ์ œํ•œ๋  ์ˆ˜ ์žˆ์Œ

์‘์šฉ ์‚ฌ๋ก€

  • PaLM (Pathways Language Model)
  • LLaMA (Large Language Model Meta AI)

์ •๊ทœํ™” ๊ธฐ๋ฒ• ๋น„๊ต

๊ฐ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์€ ์„œ๋กœ ๋‹ค๋ฅธ ํŠน์„ฑ๊ณผ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜ ํ‘œ๋Š” ์ด๋“ค์„ ๊ฐ„๋‹จํžˆ ๋น„๊ตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค:

๊ธฐ๋ฒ• ๊ณ„์‚ฐ ๋‹จ์œ„ ์žฅ์  ๋‹จ์  ์ฃผ์š” ์‘์šฉ ๋ถ„์•ผ
๋ฐฐ์น˜ ์ •๊ทœํ™” ๋ฏธ๋‹ˆ๋ฐฐ์น˜ ํ•™์Šต ์†๋„ ํ–ฅ์ƒ, ๋†’์€ ํ•™์Šต๋ฅ  ์‚ฌ์šฉ ๊ฐ€๋Šฅ ์ž‘์€ ๋ฐฐ์น˜์—์„œ ๋ถˆ์•ˆ์ •, RNN์— ์ ์šฉ ์–ด๋ ค์›€ CNN, ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
๋ ˆ์ด์–ด ์ •๊ทœํ™” ๊ฐœ๋ณ„ ์ƒ˜ํ”Œ ๋ฐฐ์น˜ ํฌ๊ธฐ ๋…๋ฆฝ์ , RNN์— ์ ์šฉ ๊ฐ€๋Šฅ CNN์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ RNN, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
์ธ์Šคํ„ด์Šค ์ •๊ทœํ™” ๊ฐœ๋ณ„ ์ƒ˜ํ”Œ์˜ ์ฑ„๋„ ์Šคํƒ€์ผ ์ „์ด์— ํšจ๊ณผ์ , ๋ฐฐ์น˜ ํฌ๊ธฐ ๋…๋ฆฝ์  ์ฑ„๋„ ๊ฐ„ ์ •๋ณด ๋ฌด์‹œ ์Šคํƒ€์ผ ์ „์ด, ์ด๋ฏธ์ง€ ์ƒ์„ฑ
๊ทธ๋ฃน ์ •๊ทœํ™” ์ฑ„๋„ ๊ทธ๋ฃน ๋ฐฐ์น˜ ํฌ๊ธฐ ๋…๋ฆฝ์ , ์ž‘์€ ๋ฐฐ์น˜์—์„œ๋„ ์•ˆ์ •์  ๊ทธ๋ฃน ์ˆ˜ ์„ ํƒ์ด ์„ฑ๋Šฅ์— ์˜ํ–ฅ ๊ฐ์ฒด ํƒ์ง€, ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜
RMS ์ •๊ทœํ™” ๊ฐœ๋ณ„ ์ƒ˜ํ”Œ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ ๋†’์Œ, ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์— ์ ํ•ฉ ํ‘œํ˜„๋ ฅ ๋‹ค์†Œ ์ œํ•œ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ

๊ฒฐ๋ก 

์ •๊ทœํ™” ๊ธฐ๋ฒ•์€ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ค‘์š”ํ•œ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ๊ฐ ๊ธฐ๋ฒ•์€ ๊ณ ์œ ํ•œ ํŠน์„ฑ๊ณผ ์žฅ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์ž‘์—…์˜ ์„ฑ๊ฒฉ๊ณผ ๋ชจ๋ธ ๊ตฌ์กฐ์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ๊ธฐ๋ฒ•์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ๋ณธ์ ์ธ ์ •๊ทœํ™” ๊ธฐ๋ฒ•๋“ค์„ ์กฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ณ€ํ˜•ํ•˜์—ฌ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ์–ป์œผ๋ ค๋Š” ์—ฐ๊ตฌ๋„ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ๊ฐ€ ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ, ์ƒˆ๋กœ์šด ์ •๊ทœํ™” ๊ธฐ๋ฒ•๋“ค์ด ๊ณ„์†ํ•ด์„œ ์ œ์•ˆ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ์‹  ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ์ฃผ์‹œํ•˜๊ณ , ์ž์‹ ์˜ ์ž‘์—…์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์„ ์‹คํ—˜์„ ํ†ตํ•ด ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

์ค‘์š”ํ•œ ๊ฐœ๋…์ด๊ธฐ์— ๊ทธ๋งŒํผ ์‹œ๊ฐ„์„ ๋“ค์—ฌ์„œ ์—ด์‹ฌํžˆ ์ž‘์„ฑํ•ด๋ดค๋Š”๋ฐ์š”! ๋„์›€์ด ๋˜์…จ์œผ๋ฉด ์ข‹๊ฒ ์Šต๋‹ˆ๋‹ค ๐Ÿค—



-->