[์ปจํผ][OpenAI] 2023 Techniques for Maximizing LLM Performance ์š”์•ฝ

Posted by Euisuk's Dev Log on November 29, 2023

[์ปจํผ][OpenAI] 2023 Techniques for Maximizing LLM Performance ์š”์•ฝ

์›๋ณธ ๊ฒŒ์‹œ๊ธ€: https://velog.io/@euisuk-chung/์ปจํผOpenAI-2023-Techniques-for-Maximizing-LLM-Performance-์š”์•ฝ

Techniques for Maximizing LLM Performance

์œ ํŠœ๋ธŒ ๋งํฌ

Video Label

์ด ์˜์ƒ์—์„œ๋Š” OpenAI์˜ ๊ฐœ๋ฐœ์ž ์ปจํผ๋Ÿฐ์Šค์—์„œ โ€œA Survey of Techniques for Maximizing LLM Performanceโ€๋ผ๋Š” ์ฃผ์ œ๋กœ ์ง„ํ–‰๋œ ์„ธ์…˜์˜ ๋‚ด์šฉ์„ ๋” ์ž์„ธํžˆ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ๋ฐœํ‘œ์ž๋“ค์€ ์–ธ์–ด ๋ชจ๋ธ(Large Language Models, LLMs)์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๊ณผ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

๋ฐœํ‘œ์ž ์†Œ๊ฐœ

  • John Allard: OpenAI์˜ Fine-tuning Product Team์˜ ์—”์ง€๋‹ˆ์–ด๋ง ๋ฆฌ๋”.
  • Colin Jarvis: OpenAI์˜ EMEA ์†”๋ฃจ์…˜ ์ฑ…์ž„์ž.

์ฃผ์š” ๋‚ด์šฉ

  1. LLM ์„ฑ๋Šฅ ์ตœ์ ํ™”์˜ ์ค‘์š”์„ฑ

    • LLM์„ ์‹ ๋ขฐ์„ฑ ์žˆ๊ฒŒ ์ƒ์‚ฐ ํ™˜๊ฒฝ์— ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ํ™”์˜ ์ค‘์š”์„ฑ ๊ฐ•์กฐ.
    • ์ตœ์ ํ™”๋Š” ์–ด๋ ต์ง€๋งŒ, ๋‹ค์–‘ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ๋„๊ตฌ๋“ค์„ ํ†ตํ•ด ์ ‘๊ทผ ๊ฐ€๋Šฅ.
  2. LLM ์„ฑ๋Šฅ ์ตœ์ ํ™”์˜ ์–ด๋ ค์›€

    • ์‹ ํ˜ธ์™€ ์žก์Œ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค๋Š” ์ .
    • LLM์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์ด ์ถ”์ƒ์ ์ด๊ณ  ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ .
    • ๋ฌธ์ œ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๋ณต์žกํ•˜๋‹ค๋Š” ์ .
  3. LLM ์„ฑ๋Šฅ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•

    • ์ตœ์ ํ™”๋Š” ์„ ํ˜•์ ์ธ ๊ณผ์ •์ด ์•„๋‹ˆ๋ผ๋Š” ์ .
    • ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง(Prompt Engineering), ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(Retrieval-Augmented Generation, RAG), ํŒŒ์ธํŠœ๋‹(Fine-tuning) ๋“ฑ ๋‹ค์–‘ํ•œ ์ ‘๊ทผ ๋ฐฉ๋ฒ•.
    • ์ด๋“ค์€ ์ƒํ˜ธ ๋ณด์™„์ ์ด๋ฉฐ, ๋•Œ๋กœ๋Š” ๋ณตํ•ฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๋Š” ์ .
    • ์„ธ๋ถ€ ๋‚ด์šฉ:

      • ์ตœ์ ํ™”์˜ ๋‘ ์ถ•: ๋ฌธ๋งฅ ์ตœ์ ํ™”(Context Optimization)์™€ ๋ชจ๋ธ ์ตœ์ ํ™”(LM Optimization).
      • ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง: ์‹œ์ž‘์ ์œผ๋กœ์„œ์˜ ์ค‘์š”์„ฑ, ๋น ๋ฅธ ํ…Œ์ŠคํŠธ ๋ฐ ํ•™์Šต ๊ฐ€๋Šฅ.
      • ํ‰๊ฐ€ ๋ฐ ๊ฒฐ์ •: ๋ฌธ์ œ๊ฐ€ ๋ฌธ๋งฅ ๋ฌธ์ œ์ธ์ง€, ๋ชจ๋ธ ํ–‰๋™ ๋ฌธ์ œ์ธ์ง€ ๊ฒฐ์ •.
      • ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ(RAG): ๋ฌธ๋งฅ์ด ๋” ํ•„์š”ํ•  ๋•Œ ์‚ฌ์šฉ.
      • ํŒŒ์ธํŠœ๋‹: ์ผ๊ด€๋œ ์ง€์‹œ ์‚ฌํ•ญ ๋”ฐ๋ฅด๊ธฐ๊ฐ€ ํ•„์š”ํ•  ๋•Œ ์‚ฌ์šฉ.
      • ์ตœ์ ํ™” ์—ฌ์ •: ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ โ†’ ํ‰๊ฐ€ โ†’ ๊ธฐ์ค€์„  ์„ค์ • โ†’ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ ์ถ”๊ฐ€ โ†’ ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ โ†’ ํŒŒ์ธํŠœ๋‹ โ†’ ๊ฒ€์ƒ‰ ์ตœ์ ํ™” โ†’ ํŒŒ์ธํŠœ๋‹ ๋ฐ˜๋ณต.
      • ์‹œ์Šคํ…œ์  ํ…Œ์ŠคํŠธ: ๋ณ€ํ™”๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ…Œ์ŠคํŠธํ•˜๋Š” ๊ฒƒ์˜ ์ค‘์š”์„ฑ.
  4. Fine-tuning์˜ ๋ฐœ์ „

    • 3.5 ํ„ฐ๋ณด ํŒŒ์ธํŠœ๋‹์˜ ์ถœ์‹œ์™€ ๊ทธ์— ๋”ฐ๋ฅธ ๊ฐœ๋ฐœ์ž ์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ๋ฐ˜์‘.
    • ์—ฐ์†์ ์ธ ํŒŒ์ธํŠœ๋‹, ํ•จ์ˆ˜ ํ˜ธ์ถœ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ F ํŠœ๋‹, ํŒŒ์ธํŠœ๋‹์„ ์œ„ํ•œ ์ „์ฒด UI ์ถœ์‹œ ๋“ฑ์˜ ๊ธฐ๋Šฅ ๊ฐœ์„ .
  5. LLM ์„ฑ๋Šฅ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ

    • ๋ฌธ์ œ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์ ‘๊ทผํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ํ”„๋ ˆ์ž„์›Œํฌ ์ œ๊ณต.
    • ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋„๊ตฌ์™€ ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์„ ๊ถŒ์žฅ.

๊ฒฐ๋ก 

์ด ์„ธ์…˜์€ LLM์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๊ณผ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜๋ฉฐ, ๊ฐœ๋ฐœ์ž๋“ค์ด ์ด๋Ÿฌํ•œ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋” ํšจ์œจ์ ์ด๊ณ  ๊ฐ•๋ ฅํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.



-->