[๋จธ์‹ ๋Ÿฌ๋‹][์‹œ๊ณ„์—ด] AR, MA, ARMA, ARIMA์˜ ๋ชจ๋“  ๊ฒƒ - ๊ฐœ๋…ํŽธ

Posted by Euisuk's Dev Log on October 9, 2021

[๋จธ์‹ ๋Ÿฌ๋‹][์‹œ๊ณ„์—ด] AR, MA, ARMA, ARIMA์˜ ๋ชจ๋“  ๊ฒƒ - ๊ฐœ๋…ํŽธ

์›๋ณธ ๊ฒŒ์‹œ๊ธ€: https://velog.io/@euisuk-chung/๋จธ์‹ ๋Ÿฌ๋‹์‹œ๊ณ„์—ด-AR-MA-ARMA-ARIMA์˜-๋ชจ๋“ -๊ฒƒ-๊ฐœ๋…ํŽธ

์˜ค๋Š˜์€ ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ๊ณ„์—ด์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ์“ฐ์ด๋Š” AR, MA, ARMA, ARIMA์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ด๋ณด๋Š” ์‹œ๊ฐ„์„ ๊ฐ€์ง€๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋‹น ํฌ์ŠคํŠธ๋Š” ๊ณ ๋ ค๋Œ€ํ•™๊ต ๊น€์„ฑ๋ฒ” ๊ต์ˆ˜๋‹˜์˜ ๊ฐ•์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋ชฉ์ฐจ

  1. ์ •์ƒ ํ”„๋กœ์„ธ์Šค์™€ ๋น„์ •์ƒ ํ”„๋กœ์„ธ์Šค
  2. Autoregressive (AR) Models
  3. Moving Average (MA) Models
  4. Autoregressive and Moving Average (ARMA)
  5. Autoregressive Integrated Moving Average (ARIMA)
  6. ACF(์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜)์™€ PACF(๋ถ€๋ถ„์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜)

  7. ์ •์ƒ ํ”„๋กœ์„ธ์Šค์™€ ๋น„์ •์ƒ ํ”„๋กœ์„ธ์Šค

(1) Stationary Process (์ •์ƒ ํ”„๋กœ์„ธ์Šค) : ์‹œ๊ฐ„์— ๊ด€๊ณ„์—†์ด ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์ด ์ผ์ •ํ•œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

Stationary Process

(2) Non-Stationary Process (๋น„์ •์ƒ ํ”„๋กœ์„ธ์Šค) : ์‹œ๊ฐ„์— ๊ด€๊ณ„์—†์ด ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์ด ์ผ์ •ํ•˜์ง€ ์•Š์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

Non-Stationary Process

๐Ÿ“• ์—ฌ๊ธฐ์„œ ์ž ๊น! ๊ทธ๋ ‡๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ์ •์ƒ๊ณผ ๋น„์ •์ƒ ํ”„๋กœ์„ธ์Šค๋ฅผ ๋น„๊ตํ• ๊นŒ์š”?

X์ถ•์„ Lag (ํ˜„์žฌ ๋ฐ์ดํ„ฐ์™€์˜ ์‹œ์  ์ฐจ์ด)๋กœ Y์ถ•์„ ACF(Autocorrelation Function)์œผ๋กœ ์‹œ๊ฐํ™” ํ•˜์˜€์„ ๋•Œ ํŠน์ • ํŒจํ„ด์ด ์—†์œผ๋ฉด Stationary Process (์ •์ƒ ํ”„๋กœ์„ธ์Šค)๋กœ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿค” ์˜คํ˜ธ๋ผ.. ๊ทธ๋ ‡๋‹ค๋ฉด AC(Autocorrelation)์€ ๋„๋Œ€์ฒด ๋ญ์ฃ ?

์šฐ๋ฆฌ๊ฐ€ ๋งŽ์ด ์ ‘ํ•ด๋ณธ Correlation์€ ๋‘ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ -1 ~ 1์˜ ๊ฐ’์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ์ฒ™๋„์ž…๋‹ˆ๋‹ค. Autocorrealation์€ Correlation์— Auto๋ผ๋Š” ๊ฐœ๋…์ด ์ถ”๊ฐ€๋œ ๊ฒƒ์œผ๋กœ, ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜์ž๋ฉด ์‹œ๊ณ„์—ด์  ๊ด€์ ์œผ๋กœ ๋ณด์•˜์„ ๋•Œ time shifted๋œ ์ž๊ธฐ ์ž์‹ ๊ณผ์˜ correlation์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

  1. Autoregressive (AR) Models

์ž๊ธฐ์ž์‹ ์„ ์ข…์†๋ณ€์ˆ˜(dependent variable) yty_tytโ€‹๋กœ ํ•˜๊ณ , ์ด์ „ ์‹œ์ ์˜ ์‹œ๊ณ„์—ด(Lag) [ytโˆ’1,ytโˆ’2,โ€ฆ,ytโˆ’p][y_{t-1}, y_{t-2} , โ€ฆ, y_{t-p}][ytโˆ’1โ€‹,ytโˆ’2โ€‹,โ€ฆ,ytโˆ’pโ€‹] ๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜(independent variable)๋กœ ๊ฐ–๋Š” ๋ชจ๋ธ(model that use lags of the dependent variable as independent variables)์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

yt=โˆ…0+โˆ…1ytโˆ’1+โˆ…2ytโˆ’2+โ€ฆ+โˆ…pytโˆ’p+ฮตty_{t}=\emptyset_{0}+\emptyset_{1} y_{t-1}+\emptyset_{2} y_{t-2}+\ldots+\emptyset_{p} y_{t-p}+\varepsilon_{t}ytโ€‹=โˆ…0โ€‹+โˆ…1โ€‹ytโˆ’1โ€‹+โˆ…2โ€‹ytโˆ’2โ€‹+โ€ฆ+โˆ…pโ€‹ytโˆ’pโ€‹+ฮตtโ€‹

Hyperparameter : p

  1. Moving Average (MA) Models

์ž๊ธฐ์ž์‹ ์„ ์ข…์†๋ณ€์ˆ˜(dependent variable) yty_tytโ€‹๋กœ ํ•˜๊ณ , ํ•ด๋‹น ์‹œ์ ๊ณผ ๊ทธ ๊ณผ๊ฑฐ์˜ white noise distribution error๋“ค๋กœ, [ฮตt,ฮตtโˆ’1,โ€ฆ,ฮตtโˆ’q][ฮต_{t}, ฮต_{t-1}, โ€ฆ, ฮต_{t-q}][ฮตtโ€‹,ฮตtโˆ’1โ€‹,โ€ฆ,ฮตtโˆ’qโ€‹]๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜(independent variable)๋กœ ๊ฐ–๋Š” ๋ชจ๋ธ (model that use past errors that follow a white noise distribution as explanatory variables)์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

yt=ฮธ0+ฮตt+ฮธ1ฮตtโˆ’1+ฮธ2ฮตtโˆ’2+โ€ฆ+ฮธqฮตtโˆ’qy_{t}=\theta_{0}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q}ytโ€‹=ฮธ0โ€‹+ฮตtโ€‹+ฮธ1โ€‹ฮตtโˆ’1โ€‹+ฮธ2โ€‹ฮตtโˆ’2โ€‹+โ€ฆ+ฮธqโ€‹ฮตtโˆ’qโ€‹

Hyperparameter : q

  1. Autoregressive and Moving Average (ARMA)

์ž๊ธฐ์ž์‹ ์„ ์ข…์†๋ณ€์ˆ˜(dependent variable) yty_tytโ€‹๋กœ ํ•˜๊ณ , ์ด์ „ ์‹œ์ ์˜ ์‹œ๊ณ„์—ด(Lag) [ytโˆ’1,ytโˆ’2,โ€ฆ,ytโˆ’p][y_{t-1}, y_{t-2} , โ€ฆ, y_{t-p}][ytโˆ’1โ€‹,ytโˆ’2โ€‹,โ€ฆ,ytโˆ’pโ€‹]๊ณผ [ฮตt,ฮตtโˆ’1,โ€ฆ,ฮตtโˆ’q][ฮต_{t}, ฮต_{t-1}, โ€ฆ, ฮต_{t-q}][ฮตtโ€‹,ฮตtโˆ’1โ€‹,โ€ฆ,ฮตtโˆ’qโ€‹]๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜(independent variable)๋กœ ๊ฐ–๋Š” ๋ชจ๋ธ๋กœ, ARMA๋ผ๋Š” ์ด๋ฆ„์—์„œ๋„ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด AR๊ณผ MA๋ฅผ ํ•ฉ์นœ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

yt=โˆ…0+โˆ…1ytโˆ’1+โˆ…2ytโˆ’2+โ‹ฏโˆ…pytโˆ’p+ฮตt+ฮธ1ฮตtโˆ’1+ฮธ2ฮตtโˆ’2+โ€ฆ+ฮธqฮตtโˆ’qy_{t}=\emptyset_{0}+\emptyset_{1} y_{t-1}+\emptyset_{2} y_{t-2}+\cdots \emptyset_{p} y_{t-p}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q}ytโ€‹=โˆ…0โ€‹+โˆ…1โ€‹ytโˆ’1โ€‹+โˆ…2โ€‹ytโˆ’2โ€‹+โ‹ฏโˆ…pโ€‹ytโˆ’pโ€‹+ฮตtโ€‹+ฮธ1โ€‹ฮตtโˆ’1โ€‹+ฮธ2โ€‹ฮตtโˆ’2โ€‹+โ€ฆ+ฮธqโ€‹ฮตtโˆ’qโ€‹

Hyperparameter : p, q

  1. Autoregressive Integrated Moving Average (ARIMA)

๊ธฐ์กด AR, MA, ARMA ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ๊ฐ€ ์ •์ƒ (Stationary)์ด์–ด์•ผ ํ•จ์œผ๋กœ ๋น„์ •์ƒ (Nonstationary)์ธ ๊ฒฝ์šฐ๋Š” ์ฐจ๋ถ„ (differencing)์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •์ƒ์œผ๋กœ ๋ณ€ํ˜•ํ•ด์ฃผ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ARIMA๋Š” ARMA ๋ชจํ˜•์— ์ฐจ๋ถ„์„ dํšŒ ์ˆ˜ํ–‰ํ•ด์ค€ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

Hyperparameter : p, q, d

๐Ÿ“• ์—ฌ๊ธฐ์„œ ์ž ๊น! ์ฐจ๋ถ„ (differencing)์ด๋ž€ ๋ญ˜๊นŒ์š”?

์ฐจ๋ถ„ (differencing)์ด๋ž€, ํ˜„ ์‹œ์  ๋ฐ์ดํ„ฐ์—์„œ d์‹œ์  ์ด์ „ ๋ฐ์ดํ„ฐ๋ฅผ ๋บ€ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ๊ทธ๋ฆผ๊ณผ ์‹์„ ํ†ตํ•ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์–ด๋–ค ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ์ง€ ์ดํ•ดํ•˜์‹ค ์ˆ˜ ์žˆ์œผ์‹ค ๊ฒ๋‹ˆ๋‹ค.

differencing

1์ฐจ ์ฐจ๋ถ„ : Yt=Xtโˆ’Xtโˆ’1=โˆ‡XtY_{t}=X_{t}-X_{t-1}=\nabla X_{t}Ytโ€‹=Xtโ€‹โˆ’Xtโˆ’1โ€‹=โˆ‡Xtโ€‹

2์ฐจ ์ฐจ๋ถ„ : Yt(2)=Xtโˆ’Xtโˆ’2=โˆ‡(2)XtY_{t}^{(2)}=X_{t}-X_{t-2}=\nabla^{(2)} X_{t}Yt(2)โ€‹=Xtโ€‹โˆ’Xtโˆ’2โ€‹=โˆ‡(2)Xtโ€‹

3์ฐจ ์ฐจ๋ถ„ : Yt(d)=Xtโˆ’Xtโˆ’d=โˆ‡(d)XtY_{t}^{(d)}=X_{t}-X_{t-d}=\nabla^{(d)} X_{t}Yt(d)โ€‹=Xtโ€‹โˆ’Xtโˆ’dโ€‹=โˆ‡(d)Xtโ€‹

์•„๋ž˜๋Š” ๊ฐ๊ฐ 1์ฐจ ์ฐจ๋ถ„, 2์ฐจ ์ฐจ๋ถ„ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ์‹œ๊ฐํ™”ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‹œ๊ณ„์—ด ๊ณก์„ ์ด ํŠน์ •ํ•œ ํŠธ๋ Œ๋“œ(constant average trend)๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด 1์ฐจ ์ฐจ๋ถ„์„, ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋“ค์‘ฅ๋‚ ์‘ฅํ•œ ํŠธ๋ Œ๋“œ๊ฐ€ ์žˆ๋‹ค๋ฉด 2์ฐจ ์ฐจ๋ถ„์„ ํ†ต์ƒ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

์ฐจ๋ถ„ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ

  1. ACF(์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜)์™€ PACF(๋ถ€๋ถ„์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜)

ACF(AutoCorrelation Function)์ด๋ž€?

ACF(AutoCorrelation Function, ์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜) ๋Š” k์‹œ๊ฐ„ ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„๋œ ์‹œ๊ณ„์—ด์˜ ๊ด€์ธก์น˜ ๊ฐ„ ์ƒ๊ด€๊ณ„์ˆ˜ ํ•จ์ˆ˜๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, k๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ACF๋Š” 0์— ๊ฐ€๊นŒ์›Œ์ง‘๋‹ˆ๋‹ค.

์ด ๋•Œ, ACF๋ฅผ ๊ตฌํ•˜๋Š” ์‹์€ ์ผ๋ฐ˜ Correlation ๊ตฌํ•˜๋Š” ์‹๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ yty_{t}ytโ€‹์™€ ytโˆ’ky_{t-k}ytโˆ’kโ€‹ ์‚ฌ์ด์˜ ์ž๊ธฐ์ƒ๊ด€์„ ๊ตฌํ•˜๋Š” ์‹์ž…๋‹ˆ๋‹ค.

ACF(k)=โˆ‘t=1Nโˆ’k(ytโˆ’yห‰)(yt+kโˆ’yห‰)โˆ‘t=1N(ytโˆ’yห‰)2A C F(k)=\frac{\sum_{t=1}^{N-k}\left(y_{t}-\bar{y}\right)\left(y_{t+k}-\bar{y}\right)}{\sum_{t=1}^{N}\left(y_{t}-\bar{y}\right)^{2}}ACF(k)=โˆ‘t=1Nโ€‹(ytโ€‹โˆ’yห‰โ€‹)2โˆ‘t=1Nโˆ’kโ€‹(ytโ€‹โˆ’yห‰โ€‹)(yt+kโ€‹โˆ’yห‰โ€‹)โ€‹

PACF(Partial ACF)์ด๋ž€?

๋จผ์ € ๋ถ€๋ถ„ ์ƒ๊ด€ (Partial Correlation) ์ด๋ž€ ๋‘ ํ™•๋ฅ  ๋ณ€์ˆ˜ X์™€ Y์— ์˜ํ•ด ๋‹ค๋ฅธ ๋ชจ๋“  ๋ณ€์ˆ˜๋“ค์— ๋‚˜ํƒ€๋‚œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ๋‚œ ์ดํ›„์—๋„ ์—ฌ์ „ํžˆ ๋‚จ์•„์žˆ๋Š” ์ƒ๊ด€ ๊ด€๊ณ„๋ผ๊ณ  ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, ๋ถ€๋ถ„์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜ (PACF) ๋Š” ์ž๊ธฐ์ƒ๊ด€ํ•จ์ˆ˜์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์‹œ๊ณ„์—ด ๊ด€์ธก์ง€ ๊ฐ„ ์ƒ๊ด€ ๊ด€๊ณ„ ํ•จ์ˆ˜์ด๊ณ , ์‹œ์ฐจ k์—์„œ์˜ k๋‹จ๊ณ„๋งŒํผ ๋–จ์–ด์ ธ ์žˆ๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ ์ ๋“ค๊ฐ„์˜ ์ˆœ์ˆ˜ํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์‹œ๋งํ•ด yty_{t}ytโ€‹์™€ ytโˆ’ky_{t-k}ytโˆ’kโ€‹์˜ PACF๋Š”, yty_{t}ytโ€‹์™€ ytโˆ’ky_{t-k}ytโˆ’kโ€‹๊ฐ„์˜ ์ˆœ์ˆ˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋กœ์„œ ๋‘ ์‹œ์  ์‚ฌ์ด์— ํฌํ•จ๋œ ๋ชจ๋“  ytโˆ’1,ytโˆ’2,โ€ฆ,ytโˆ’k+1y_{t-1}, y_{t-2}, \ldots, y_{t-k+1}ytโˆ’1โ€‹,ytโˆ’2โ€‹,โ€ฆ,ytโˆ’k+1โ€‹์˜ ์˜ํ–ฅ๋ ฅ์€ ์ œ๊ฑฐ๋จ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

๋‹ค์Œ์€ yty_{t}ytโ€‹์™€ ytโˆ’ky_{t-k}ytโˆ’kโ€‹ ์‚ฌ์ด์˜ ํŽธ์ž๊ธฐ์ƒ๊ด€์„ ๊ตฌํ•˜๋Š” ์‹์ž…๋‹ˆ๋‹ค.

PACF(k)=Corrโก(et,etโˆ’k)P A C F(k)=\operatorname{Corr}\left(e_{t}, e_{t-k}\right)PACF(k)=Corr(etโ€‹,etโˆ’kโ€‹)

์–ด๋–ป๊ฒŒ ์‚ฌ์šฉ๋˜๋Š”๊ฐ€?

ACF์™€ PACF์˜ ๋ชจ์–‘์„ ํ†ตํ•ด ARIMA(AR, MA, ARMA) ๋ชจ๋ธ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ธ p์™€ q๋ฅผ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ ๊ทธ ๋ฐฉ๋ฒ•์€ ์•„๋ž˜ ํ‘œ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

ACF, PACF

๊ธด ๊ธ€ ์ฝ์–ด์ฃผ์…”์„œ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค ^~^



-->